-
公开(公告)号:CN111967258A
公开(公告)日:2020-11-20
申请号:CN202010667443.1
申请日:2020-07-13
Applicant: 中国科学院计算技术研究所
IPC: G06F40/289 , G06F40/216
Abstract: 本发明实施例提供了一种构建共指消解模型的方法、共指消解的方法和介质,所述方法包括A1、构建初始共指消解模型,所述初始共指消解模型包括预训练模块、文段向量模块、指称词判断模块和共指判断模块,其中,所述预训练模块采用预训练的XLNet模型,所述指称词判断模块包括第一前馈网络,所述共指判断模块包括第二前馈网络;A2、获取包括多个句子的训练数据集,所述训练数据集带有人工标注的共指关系;A3、用所述训练数据集对初始共指消解模型进行多轮训练至其收敛获得共指消解模型。本发明实施例的技术方案可以提升共指消解过程对于长距离依赖的共指关系的判断性能。
-
公开(公告)号:CN111967258B
公开(公告)日:2023-07-21
申请号:CN202010667443.1
申请日:2020-07-13
Applicant: 中国科学院计算技术研究所
IPC: G06F40/289 , G06F40/216
Abstract: 本发明实施例提供了一种构建共指消解模型的方法、共指消解的方法和介质,所述方法包括A1、构建初始共指消解模型,所述初始共指消解模型包括预训练模块、文段向量模块、指称词判断模块和共指判断模块,其中,所述预训练模块采用预训练的XLNet模型,所述指称词判断模块包括第一前馈网络,所述共指判断模块包括第二前馈网络;A2、获取包括多个句子的训练数据集,所述训练数据集带有人工标注的共指关系;A3、用所述训练数据集对初始共指消解模型进行多轮训练至其收敛获得共指消解模型。本发明实施例的技术方案可以提升共指消解过程对于长距离依赖的共指关系的判断性能。
-