-
公开(公告)号:CN110490836B
公开(公告)日:2023-03-24
申请号:CN201910600118.0
申请日:2019-07-04
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明属于生物芯片技术领域,具体涉及一种dPCR微阵列图像信息处理方法。本发明提供的dPCR微阵列图像信息处理方法,包括先输入三个通道的dPCR微阵列图像:通道1图像、通道2图像、通道3图像,并对其中的通道2图像、通道3图像进行图像配准,再分别依次对通道1图像、经图像配准的通道2图像、经图像配准的通道3图像进行中值滤波、对比度增强、均值滤波处理,然后进行图像融合、去除光照不均匀影响、二值化修正处理,提取样点中心点坐标,选取每个样点的ROI区域,得到每个样点的信号结果。该方法以一种寻址定位方法,代替传统的网格化步骤,能够对非垂直正交排列的微阵列图像做准确、自动的样点信息提取和分析。
-
公开(公告)号:CN110241017B
公开(公告)日:2022-09-20
申请号:CN201910377557.X
申请日:2019-05-07
Applicant: 中国科学院苏州生物医学工程技术研究所 , 苏州国科芯感医疗科技有限公司
Abstract: 本发明涉及样本检测技术领域,具体涉及一种数字化生物检测芯片及封装夹具。其中,检测芯片,包括:芯片壳体,具有封装腔;微孔芯片,其上成型有若干毛细微孔,并被封装于所述封装腔中;所述微孔芯片通过支撑结构保持其两面与所述芯片壳体之间均具有间隔,以形成容纳封装油的腔室;每个所述腔室对应的所述芯片壳体上分别成型有流入通道和流出通道。在芯片壳体的流入通道可分别向上述腔室内注入封装油,多余的样本可经流出通道排出,以形成“封装油—芯片(样本)—封装油”的封装模式,保证各通孔形成的微单元之间的独立。本发明可用在数字PCR、单细胞分析等领域。
-
公开(公告)号:CN110490836A
公开(公告)日:2019-11-22
申请号:CN201910600118.0
申请日:2019-07-04
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明属于生物芯片技术领域,具体涉及一种dPCR微阵列图像信息处理方法。本发明提供的dPCR微阵列图像信息处理方法,包括先输入三个通道的dPCR微阵列图像:通道1图像、通道2图像、通道3图像,并对其中的通道2图像、通道3图像进行图像配准,再分别依次对通道1图像、经图像配准的通道2图像、经图像配准的通道3图像进行中值滤波、对比度增强、均值滤波处理,然后进行图像融合、去除光照不均匀影响、二值化修正处理,提取样点中心点坐标,选取每个样点的ROI区域,得到每个样点的信号结果。该方法以一种寻址定位方法,代替传统的网格化步骤,能够对非垂直正交排列的微阵列图像做准确、自动的样点信息提取和分析。
-
公开(公告)号:CN111212237B
公开(公告)日:2021-10-22
申请号:CN202010090432.1
申请日:2020-02-13
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: H04N5/232
Abstract: 本发明公开了一种用于生物荧光芯片的自动对焦方法,包括以下步骤:自适应窗口选取;自适应阈值选取;计算离焦距离和离焦方向;实现样本对焦。本发明根据微孔式PCR芯片的微孔及排列特征自适应的选择及调整窗口位置,以保证对焦对象及其边界区域位于对焦窗口内;根据对焦对象亮度的高低自适应的调整阈值,变化的阈值给后续不同亮度的样本在其对焦曲线的一致性上奠定了基础;本发明得出了微孔式数字PCR芯片荧光图像随离焦距离的变化、其大于阈值的像素数的变化曲线及其分段函数后,根据分段函数及方向判别方法,只需3个位置的荧光图像,即可得出离焦距离和离焦方向,再需一步即可完成对焦,整个过程仅需4步完成对焦。
-
公开(公告)号:CN111212237A
公开(公告)日:2020-05-29
申请号:CN202010090432.1
申请日:2020-02-13
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: H04N5/232
Abstract: 本发明公开了一种用于生物荧光芯片的自动对焦方法,包括以下步骤:自适应窗口选取;自适应阈值选取;计算离焦距离和离焦方向;实现样本对焦。本发明根据微孔式PCR芯片的微孔及排列特征自适应的选择及调整窗口位置,以保证对焦对象及其边界区域位于对焦窗口内;根据对焦对象亮度的高低自适应的调整阈值,变化的阈值给后续不同亮度的样本在其对焦曲线的一致性上奠定了基础;本发明得出了微孔式数字PCR芯片荧光图像随离焦距离的变化、其大于阈值的像素数的变化曲线及其分段函数后,根据分段函数及方向判别方法,只需3个位置的荧光图像,即可得出离焦距离和离焦方向,再需一步即可完成对焦,整个过程仅需4步完成对焦。
-
公开(公告)号:CN110241017A
公开(公告)日:2019-09-17
申请号:CN201910377557.X
申请日:2019-05-07
Applicant: 中国科学院苏州生物医学工程技术研究所 , 苏州国科芯感医疗科技有限公司
Abstract: 本发明涉及样本检测技术领域,具体涉及一种数字化生物检测芯片及封装夹具。其中,检测芯片,包括:芯片壳体,具有封装腔;微孔芯片,其上成型有若干毛细微孔,并被封装于所述封装腔中;所述微孔芯片通过支撑结构保持其两面与所述芯片壳体之间均具有间隔,以形成容纳封装油的腔室;每个所述腔室对应的所述芯片壳体上分别成型有流入通道和流出通道。在芯片壳体的流入通道可分别向上述腔室内注入封装油,多余的样本可经流出通道排出,以形成“封装油—芯片(样本)—封装油”的封装模式,保证各通孔形成的微单元之间的独立。本发明可用在数字PCR、单细胞分析等领域。
-
公开(公告)号:CN210134113U
公开(公告)日:2020-03-10
申请号:CN201920575840.9
申请日:2019-04-25
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本实用新型提供一种高通量芯片扫描系统,包括至少一个激光器,二维振镜系统及光源收集机构。二维振镜系统包括第一驱动器、第一振镜、第二驱动器和第二振镜,激光器的出光面与第一振镜的第一反射面相对布置;第二振镜的第二反射面与第一反射面相对布置且接收第一反射面反射出的光;第二振镜反射出的光形成扫描光源。第一驱动器驱动第一振镜转动的同时第二驱动器驱动第二振镜转动,振镜转动使激光光路产生运动,激光照射到样品上的X向和Y向的位置发生变化,样品上的染色剂受激光激发产生荧光,产生的荧光被光源收集机构收集;二维振镜在X向扫描的同时实现Y向扫描,无需移动样品,即可完成单通道样品的扫描,节省了移动样品的时间,扫描速度快。
-
-
-
-
-
-