基于海量新闻数据的快速热点检测方法及系统

    公开(公告)号:CN108304502B

    公开(公告)日:2020-10-02

    申请号:CN201810044908.0

    申请日:2018-01-17

    Abstract: 本发明涉及一种基于海量新闻数据的快速热点检测方法及系统,所述快速热点检测方法包括:对多个待处理新闻文本进行链式聚类,得到粗聚类集合;基于快速搜索和寻找密度峰值方法,对所述粗聚类集合进行搜索,得到细聚类集合;提取所述细聚类集合中的代表性短语,所述代表性短语为热点词语。本发明可直接对多个待处理新闻文本进行链式聚类,得到粗聚类集合;进一步基于快速搜索和寻找密度峰值方法,进行聚类,从而得到细聚类集合,并从中提取代表性短语,从而可快速捕捉到新闻文本中的热点词语,可提高计算效率和准确性。

    事件追踪与变化阶段划分方法、系统及相关设备

    公开(公告)号:CN109325524A

    公开(公告)日:2019-02-12

    申请号:CN201811014739.2

    申请日:2018-08-31

    Abstract: 本发明涉及机器学习领域,具体涉及一种事件追踪与变化阶段划分方法、系统及相关设备,旨在提高计算效率。本发明的方法包括:从多个不同的新闻传播通道中采集新闻数据并存入数据库中;然后进行话题聚类,选择待追踪事件对应的新闻集合,并查找出待追踪事件的起始发布时间;以起始发布时间为起点,绘制待追踪事件在单位时间内的信息量随时间变化的曲线,再进行等时间间隔采样,绘制出平滑后的演化包络线;求出极大值点的个数,进而计算出变化阶段的个数;计算出极大值点和极小值点;在每个极大值点的前后,分别根据预设的信息量百分比选择分割点,从而划分出不同的变化阶段。本发明提升了算法的效率,降低了时间复杂度、阈值依赖和形状依赖。

    基于海量新闻数据的快速热点检测方法及系统

    公开(公告)号:CN108304502A

    公开(公告)日:2018-07-20

    申请号:CN201810044908.0

    申请日:2018-01-17

    Abstract: 本发明涉及一种基于海量新闻数据的快速热点检测方法及系统,所述快速热点检测方法包括:对多个待处理新闻文本进行链式聚类,得到粗聚类集合;基于快速搜索和寻找密度峰值方法,对所述粗聚类集合进行搜索,得到细聚类集合;提取所述细聚类集合中的代表性短语,所述代表性短语为热点词语。本发明可直接对多个待处理新闻文本进行链式聚类,得到粗聚类集合;进一步基于快速搜索和寻找密度峰值方法,进行聚类,从而得到细聚类集合,并从中提取代表性短语,从而可快速捕捉到新闻文本中的热点词语,可提高计算效率和准确性。

    基于社会媒体的多层级情感分析方法

    公开(公告)号:CN108804412A

    公开(公告)日:2018-11-13

    申请号:CN201810331227.2

    申请日:2018-04-13

    CPC classification number: G06F17/2785 G06F17/2715 G06F17/2735 G06Q50/01

    Abstract: 本发明涉及自然语言处理领域,提出了一种基于社会媒体的多层级情感分析方法,旨在解决社会媒体中文章灵活多变,训练数据缺失,难以在有限数据集上取得满意的情感分类效果的问题。该方法包括:获取待进行情感分析的社会媒体的文本信息;对上述文本信息进行情感特征分析,根据情感特征分析结果确定上述文本信息的情感。对于来自社会媒体的文章,从词语和篇章两个层级进行优化处理。在词语层级上,进行泛化情感词抽取,以自动化扩充领域词典;在篇章层级上,设计自学习机制,以自动扩充训练样本。本发明实现了对从词和篇章两个层级切入,对社会媒体情感分析中的情感词典和分析模型进行优化。

Patent Agency Ranking