-
公开(公告)号:CN114596608B
公开(公告)日:2023-03-28
申请号:CN202210061187.0
申请日:2022-01-19
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种基于多线索的双流视频人脸伪造检测方法及系统,包括:将待检测视频流输入至预先训练好的多线索视频伪造检测模型,得到人脸真假分类检测结果;该检测模型是基于EfficientNet‑B5网络和Swin Transformer网络并行交互融合形成多线索,对伪造视频训练数据集进行训练所得到的。本发明通过利用视频图像帧中的高频信息、低级纹理和光流信息的组合线索,融合EfficientNet‑B5网络的局部特征提取能力以及Swin Transformer网络的全局关系感知能力,在分辨视频帧中人脸图像的真假时,体现了更优越的分类性能,有效克服传统分类模型在线索上的单一性和模型上泛化性低的缺陷。
-
公开(公告)号:CN114596608A
公开(公告)日:2022-06-07
申请号:CN202210061187.0
申请日:2022-01-19
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种基于多线索的双流视频人脸伪造检测方法及系统,包括:将待检测视频流输入至预先训练好的多线索视频伪造检测模型,得到人脸真假分类检测结果;该检测模型是基于EfficientNet‑B5网络和Swin Transformer网络并行交互融合形成多线索,对伪造视频训练数据集进行训练所得到的。本发明通过利用视频图像帧中的高频信息、低级纹理和光流信息的组合线索,融合EfficientNet‑B5网络的局部特征提取能力以及Swin Transformer网络的全局关系感知能力,在分辨视频帧中人脸图像的真假时,体现了更优越的分类性能,有效克服传统分类模型在线索上的单一性和模型上泛化性低的缺陷。
-
公开(公告)号:CN114596609A
公开(公告)日:2022-06-07
申请号:CN202210062374.0
申请日:2022-01-19
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种视听伪造检测方法及装置,该方法包括:获取待测视频数据;其中,待测视频数据包括至少两个视频帧,每个视频帧均包括至少一组由人脸图像和音频数据组成的视听对;将各视听对输入至训练好的双流网络,得到待测视频数据的伪造检测结果;其中,双流网络包括图像网络分支、音频网络分支和预测网络;图像网络分支用于提取人脸图像的面部关键点特征,并基于面部关键点特征提取人脸图像的帧间一致性特征;音频网络分支用于提取音频数据的音频特征,并基于音频特征提取音频数据的时间一致性特征;预测网络基于帧间一致性特征和时间一致性特征获取待测视频数据的伪造检测结果。本发明能够全面准确地对待测视频数据进行真伪检测。
-
公开(公告)号:CN114596609B
公开(公告)日:2023-05-09
申请号:CN202210062374.0
申请日:2022-01-19
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种视听伪造检测方法及装置,该方法包括:获取待测视频数据;其中,待测视频数据包括至少两个视频帧,每个视频帧均包括至少一组由人脸图像和音频数据组成的视听对;将各视听对输入至训练好的双流网络,得到待测视频数据的伪造检测结果;其中,双流网络包括图像网络分支、音频网络分支和预测网络;图像网络分支用于提取人脸图像的面部关键点特征,并基于面部关键点特征提取人脸图像的帧间一致性特征;音频网络分支用于提取音频数据的音频特征,并基于音频特征提取音频数据的时间一致性特征;预测网络基于帧间一致性特征和时间一致性特征获取待测视频数据的伪造检测结果。本发明能够全面准确地对待测视频数据进行真伪检测。
-
-
-