基于判别性示例选择多示例学习的恐怖视频识别方法

    公开(公告)号:CN103413125A

    公开(公告)日:2013-11-27

    申请号:CN201310376064.7

    申请日:2013-08-26

    Abstract: 本发明公开一种基于判别性示例选择多示例学习的恐怖视频识别方法。该方法包括:提取训练视频集中每个视频的视频镜头,针对每个视频镜头选取情感代表帧和情感突变帧表示该镜头;提取对每个镜头的音频和视频特征作为视频示例,组成视频示例集合;从所述视频示例集合中选择出判别性视频示例;计算训练视频集合中每个视频示例与所述判别性视频示例之间的相似性距离,得到特征向量集合;将待识别视频的特征向量与训练视频集合对应的特征向量集合进行稀疏重构,根据重构误差识别视频的类别。本发明提出了一种新的基于判别性示例选择的多示例学习模型应用到恐怖电影场景识别中,该技术具有重要的学术意义和社会意义,并具有广阔的应用前景。

    基于多视角多示例学习的恐怖视频场景识别方法

    公开(公告)号:CN103473555B

    公开(公告)日:2016-09-21

    申请号:CN201310376618.3

    申请日:2013-08-26

    Abstract: 本发明公开了一种基于多视角多示例学习的恐怖视频识别方法,其包括:对训练视频集合中的视频提取视频镜头,并针对每个视频镜头选取情感代表帧和情感突变帧;对训练视频集合中每个视频镜头提取音频和视觉特征,其中视觉特征基于所提取的情感代表帧和情感突变帧提取;对于每一个视频提取其四个视角特征向量,构成训练视频集合的多视角特征集合;对所得到的训练视频集合对应的多视角特征集合和待识别视频的多视角特征向量进行稀疏重构,得到稀疏重构系数;根据所述稀疏重构系数计算待识别视频的多视角特征向量与训练视频集合中恐怖视频集合与非恐怖视频集合分别对应的多视频特征集合的重构误差,进而确定待识别视频是否为恐怖视频。

    基于多视角多示例学习的恐怖视频场景识别方法

    公开(公告)号:CN103473555A

    公开(公告)日:2013-12-25

    申请号:CN201310376618.3

    申请日:2013-08-26

    Abstract: 本发明公开了一种基于多视角多示例学习的恐怖视频识别方法,其包括:对训练视频集合中的视频提取视频镜头,并针对每个视频镜头选取情感代表帧和情感突变帧;对训练视频集合中每个视频镜头提取音频和视觉特征,其中视觉特征基于所提取的情感代表帧和情感突变帧提取;对于每一个视频提取其四个视角特征向量,构成训练视频集合的多视角特征集合;对所得到的训练视频集合对应的多视角特征集合和待识别视频的多视角特征向量进行稀疏重构,得到稀疏重构系数;根据所述稀疏重构系数计算待识别视频的多视角特征向量与训练视频集合中恐怖视频集合与非恐怖视频集合分别对应的多视频特征集合的重构误差,进而确定待识别视频是否为恐怖视频。

    基于判别性示例选择多示例学习的恐怖视频识别方法

    公开(公告)号:CN103413125B

    公开(公告)日:2016-08-17

    申请号:CN201310376064.7

    申请日:2013-08-26

    Abstract: 本发明公开一种基于判别性示例选择多示例学习的恐怖视频识别方法。该方法包括:提取训练视频集中每个视频的视频镜头,针对每个视频镜头选取情感代表帧和情感突变帧表示该镜头;提取对每个镜头的音频和视频特征作为视频示例,组成视频示例集合;从所述视频示例集合中选择出判别性视频示例;计算训练视频集合中每个视频示例与所述判别性视频示例之间的相似性距离,得到特征向量集合;将待识别视频的特征向量与训练视频集合对应的特征向量集合进行稀疏重构,根据重构误差识别视频的类别。本发明提出了一种新的基于判别性示例选择的多示例学习模型应用到恐怖电影场景识别中,该技术具有重要的学术意义和社会意义,并具有广阔的应用前景。

    一种基于上下文稀疏表示的恐怖视频识别方法及装置

    公开(公告)号:CN103854014A

    公开(公告)日:2014-06-11

    申请号:CN201410065197.7

    申请日:2014-02-25

    Abstract: 本发明公开了一种基于上下文稀疏表示的恐怖视频识别方法及装置,该方法包括:对训练视频样本进行镜头分割,然后针对每个镜头选取一幅关键帧来代表该镜头;提取每个关键帧的视觉特征,并提取整个训练视频样本的音频特征;建立起每一个训练视频样本内部各个关键帧之间的上下文关系图;提取待识别视频的视觉特征、音频特征;构建待识别视频与训练视频样本之间的代价矩阵;基于上下文稀疏表示模型,利用所有训练视频样本对所述待识别视频进行重构,重构误差最小的训练视频样本的类别即为待识别视频的类别;其中所述上下文稀疏表示模块以所述训练视频样本的上下文关系图作为稀疏表示的词典,并利用所述代价矩阵对其进行约束。

Patent Agency Ranking