-
公开(公告)号:CN114882091A
公开(公告)日:2022-08-09
申请号:CN202210476348.2
申请日:2022-04-29
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种结合语义边缘的深度估计方法,包括:获取待深度估计的图像;将所述图像输入至训练好的深度学习网络中得到深度预测图和语义边缘预测图;所述深度学习网络包括:共享特征提取模块、深度估计模块、边缘增强权重模块、深度边缘语义分类模块和语义边缘检测模块;所述共享特征提取模块用于提取所述图像中的特征信息,并传输给所述深度估计模块和语义边缘检测模块;所述深度估计模块通过所述语义边缘检测模块输出的语义边缘引导视差平滑,并通过图像双重构的方式进行深度估计;所述边缘增强权重模块基于所述深度估计模块输出的深度预测图的深度边缘形成所述语义边缘检测模块所需要融合的特征结果;所述深度边缘语义分类模块用于进行深度边缘语义分类预测;所述语义边缘检测模块用于输出图像的语义边缘分类预测。本发明能够提高准确度。
-
公开(公告)号:CN114882091B
公开(公告)日:2024-02-13
申请号:CN202210476348.2
申请日:2022-04-29
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 分类模块用于进行深度边缘语义分类预测;所述本发明涉及一种结合语义边缘的深度估计 语义边缘检测模块用于输出图像的语义边缘分方法,包括:获取待深度估计的图像;将所述图像 类预测。本发明能够提高准确度。输入至训练好的深度学习网络中得到深度预测图和语义边缘预测图;所述深度学习网络包括:共享特征提取模块、深度估计模块、边缘增强权重模块、深度边缘语义分类模块和语义边缘检测模块;所述共享特征提取模块用于提取所述图像中的特征信息,并传输给所述深度估计模块和语义边缘检测模块;所述深度估计模块通过所述语义边缘检测模块输出的语义边缘引导视差平滑,并通过图像双重构的方式进行深度估计;所述边缘增强权重模块基于所述深度估计模块输出的(56)对比文件Jing Liu 等.CollaborativeDeconvolutional Neural Networks for JointDepth Estimation and SemanticSegmentation《.IEEE TRANSACTIONS ON NEURALNETWORKS AND LEARNING SYSTEMS》.2018,第第29卷卷(第第11期期),5655-5666.
-