一种抗老化电解液添加剂、锂离子电池电解液及锂离子电池

    公开(公告)号:CN110635168A

    公开(公告)日:2019-12-31

    申请号:CN201910772616.3

    申请日:2019-08-21

    Abstract: 本发明公开了一种抗老化电解液添加剂、锂离子电池电解液及锂离子电池,所述添加剂为具有反式结构的白藜芦醇,所述锂离子电池电解液包括电解质锂盐、非水有机溶剂和上述添加剂,添加剂的含量占电解液总质量的100-300ppm,所述锂离子电池包括正极片、石墨负极片、隔膜和上述电解液。本发明中的白藜芦醇添加剂能够有效地减少电解液在长贮存过程中发生的氧化分解,延长电解液的存贮寿命,能够在负极表面生成性能稳定的SEI膜,有效地降低电解质的分解,改善电池的可逆循环容量,还能有效降低锂离子电池充放电循环过程中的动力学阻抗,提高锂离子电池循环寿命。

    一种卷绕炭纳米片的制备方法

    公开(公告)号:CN110092367A

    公开(公告)日:2019-08-06

    申请号:CN201910418309.5

    申请日:2019-05-20

    Abstract: 本发明公开的一种卷绕炭纳米片的制备方法,以链状聚合物为碳前驱体,以无机盐为模板,通过控制无机盐晶体结晶行为,实现结晶诱导制备卷绕炭纳米片。所制备的卷绕炭纳米片长度为5-200μm,卷绕结构内径为2-40μm,卷绕层数为1-20层,炭纳米片厚度为1-200nm,卷绕炭纳米片尺寸、卷绕层数、单片层厚度可调,原料成本低廉,制备方法简单,结构可控,绿色无污染,中性盐晶体可以重复利用,降低了生产成本。所制得的卷绕炭纳米片尺寸、卷绕层数、单片层厚度可调,将其用于锂离子电池负极材料时,可表现出优秀的循环与倍率性能。

    六氟铁酸锂与碳纳米管复合材料的制备方法

    公开(公告)号:CN106025269B

    公开(公告)日:2018-08-10

    申请号:CN201610581386.9

    申请日:2016-07-22

    Abstract: 一种六氟铁酸锂与碳纳米管复合材料的制备方法,将20克的九水硝酸铁溶于200毫升的去离子水中,加入5毫克十六烷基三甲基溴化铵,持续搅拌3小时,形成饱和溶液;将0.1克的碳纳米管加入到20毫升的1摩尔/升的氢氧化钠溶液中搅拌,用去离子水清洗至中性,离心抽滤;将处理过的碳纳米管加入到20毫升的40%氢氟酸溶液中,搅拌,得到分散较为均匀的碳纳米管‑氢氟酸溶液;将得到的碳纳米管‑氢氟酸溶液与5.6克的碳酸锂粉末加入到硝酸铁‑十六烷基三甲基溴化铵溶液中,持续搅拌,得到黑色沉淀;将得到的黑色沉淀用异丙醇清洗离心四遍后在80℃的鼓风干燥箱里干燥10小时,即得到六氟铁酸锂与碳纳米管复合材料,其是导电性较好的复合材料,能够用作锂离子电池的正极材料。

    一种含三氟化硼官能团的锂/氟化碳电池电解液添加剂

    公开(公告)号:CN116314895A

    公开(公告)日:2023-06-23

    申请号:CN202310510403.X

    申请日:2023-05-08

    Abstract: 本发明属于锂/氟化碳一次电池技术领域,具体涉及一种含三氟化硼官能团的锂/氟化碳电池电解液添加剂,在常规锂/氟化碳电池电解液中配制含有0.5wt%‑2wt%的添加剂,所述添加剂含有三氟化硼官能团。锂/氟化碳电池放电总反应为xLi+CFx→xLiF+C,由于反应产物LiF为绝缘体,覆盖于氟化碳表面与层间,严重阻碍了Li+的传递。本发明发现了一种新型的、低成本、容易合成的含三氟化硼官能团的添加剂,这种添加剂能溶解反应产物LiF,使得氟化碳释放更多的容量,从而提高锂/氟化碳电池的放电电压平台以及能量密度。而且由于该类添加剂合成简单,成本较低,同时添加剂添加时操作十分简单,易于实现规模生产。

    一种抗老化电解液添加剂、锂离子电池电解液及锂离子电池

    公开(公告)号:CN110635168B

    公开(公告)日:2020-12-22

    申请号:CN201910772616.3

    申请日:2019-08-21

    Abstract: 本发明公开了一种抗老化电解液添加剂、锂离子电池电解液及锂离子电池,所述添加剂为具有反式结构的白藜芦醇,所述锂离子电池电解液包括电解质锂盐、非水有机溶剂和上述添加剂,添加剂的含量占电解液总质量的100‑300ppm,所述锂离子电池包括正极片、石墨负极片、隔膜和上述电解液。本发明中的白藜芦醇添加剂能够有效地减少电解液在长贮存过程中发生的氧化分解,延长电解液的存贮寿命,能够在负极表面生成性能稳定的SEI膜,有效地降低电解质的分解,改善电池的可逆循环容量,还能有效降低锂离子电池充放电循环过程中的动力学阻抗,提高锂离子电池循环寿命。

    一种新型锂离子电池正极材料铬钼氧化物及其制备方法

    公开(公告)号:CN103787416A

    公开(公告)日:2014-05-14

    申请号:CN201410068649.7

    申请日:2014-02-27

    Abstract: 本发明公开了一种新型锂离子电池正极材料铬钼氧化物及其制备方法。所述铬钼氧化物为一种化合物,其化学通式为Cr2Mo3O12,其中铬原子、钼原子与氧原子摩尔比2:3:12。该铬钼氧化物作为锂离子电池正极,初始放电容量为468.7mAhg-1,经过10周和20周充放电循环后,容量分别衰减为272.7和237.5mAhg-1,是高容量锂离子电池理想的新型正极材料。本发明铬钼氧化物采用三氧化二铬和三氧化钼为原料的高温固相烧结法制备。本发明铬钼氧化物容量高,制备方法简单,成本低廉,是一种新型锂离子电池正极材料。

    一种多步致密化制备钾离子电池炭负极的方法及应用

    公开(公告)号:CN113666357B

    公开(公告)日:2023-06-30

    申请号:CN202110955574.4

    申请日:2021-08-19

    Abstract: 本发明属于炭材料制备方法及钾离子电池负极材料技术领域,本发明公开了一种多步致密化制备钾离子电池炭负极的方法,利用混酸对炭前驱体进行氧化处理,再经过热处理与溶剂热处理的多步致密化处理,最后经过碳化处理得到致密化的炭材料,该方法与未致密化和一步致密化所得炭材料相比可实现同步显著提高容量与倍率性能、降低电位、提升首效的作用。本发明提供的致密化的炭材料,内部具有可供低电位储钾的区域sp2短程类石墨微晶和可供离子快速传输的联通sp3缺陷通道构成的杂化结构,具有可设计性。本发明还提供了所述致密化的炭材料的应用,将所得致密化的炭材料作为钾离子电池负极材料,具有高库伦效率、低电位平台、高比容量、高倍率的性能。

    一种氮硫共掺杂多孔炭及其制备方法和应用

    公开(公告)号:CN115504450A

    公开(公告)日:2022-12-23

    申请号:CN202211113244.1

    申请日:2022-09-14

    Abstract: 本发明属于电极材料技术领域,具体涉及一种氮硫共掺杂多孔炭及其制备方法和应用。本发明提供了制备方法,包括以下步骤:将沥青、氯化钠、氮硫源和极性有机溶剂混合,得到混合浆料;将所述混合浆料干燥后依次进行第一炭化和第二炭化,得到所述氮硫共掺杂多孔炭;所述氮硫源包括硫脲、罗丹宁和噻唑中的一种或几种。实施例的数据表明,以本发明所述的氮硫共掺杂多孔炭作为钾离子电池的负极材料时,在0.1A·g‑1电流密度下可逆比容量可达240~300mAh·g‑1,且在2A·g‑1的大电流密度下依然能保留150~200mAh·g‑1的可逆比容量,具有优异的可逆容量与倍率性能。

    一种多步致密化制备钾离子电池炭负极的方法及应用

    公开(公告)号:CN113666357A

    公开(公告)日:2021-11-19

    申请号:CN202110955574.4

    申请日:2021-08-19

    Abstract: 本发明属于炭材料制备方法及钾离子电池负极材料技术领域,本发明公开了一种多步致密化制备钾离子电池炭负极的方法,利用混酸对炭前驱体进行氧化处理,再经过热处理与溶剂热处理的多步致密化处理,最后经过碳化处理得到致密化的炭材料,该方法与未致密化和一步致密化所得炭材料相比可实现同步显著提高容量与倍率性能、降低电位、提升首效的作用。本发明提供的致密化的炭材料,内部具有可供低电位储钾的区域sp2短程类石墨微晶和可供离子快速传输的联通sp3缺陷通道构成的杂化结构,具有可设计性。本发明还提供了所述致密化的炭材料的应用,将所得致密化的炭材料作为钾离子电池负极材料,具有高库伦效率、低电位平台、高比容量、高倍率的性能。

Patent Agency Ranking