一种复合式反射镜及其制备方法

    公开(公告)号:CN103487858A

    公开(公告)日:2014-01-01

    申请号:CN201310429941.2

    申请日:2013-09-18

    Abstract: 本发明是关于一种复合式反射镜及其制备方法,属于太阳能热利用领域,所述复合式反射镜用于聚集太阳能,其包括:反射层、背板玻璃层和粘接于所述反射层与所述背板玻璃层之间的胶片层,所述复合式反射镜还包括电热组件,其包括:若干根电热丝,布设于所述胶片层内;输入汇流条,其输出端与所述的若干根电热丝的输入端连接;输出汇流条,其输入端与所述的若干根电热丝的输出端连接;输入导线,其输出端与所述输入汇流条的输入端连接,其输入端探出所述反射层、背板玻璃层和胶片层;以及输出导线,其输入端与所述输出汇流条的输出端连接,其输出端探出所述反射层、背板玻璃层和胶片层。该复合式反射镜具有电加热功能,使用寿命长。

    玻璃热弯模具及其制造方法及应用

    公开(公告)号:CN103359919A

    公开(公告)日:2013-10-23

    申请号:CN201310259761.4

    申请日:2013-06-26

    CPC classification number: Y02P40/57

    Abstract: 本发明是关于一种玻璃热弯模具及其制造方法及应用,属于太阳能利用技术领域,其包括:主体,设有多个贯穿其上、下表面的通孔;以及框架型的玻璃边缘热弯部,其与所述主体连接,并且其上表面与所述主体的上表面共同形成玻璃成型面。本发明通过在玻璃热弯模具的主体部分设置通孔,减少了热弯模具所用材料,降低了模具生产成本,同时减少了模具对热量的吸收,有利于热弯过程中玻璃均匀受热成型,同时有助于模具自身热量的扩散,既延长了模具的使用寿命又确保了玻璃的成型精度;由于存在通孔,该热弯模具在热弯过程中的热循环好,能够同时热弯多块玻璃,大幅度提高了生产效率;通孔的设置还大大减小了模具的重量,方便模具吊运。

    一种复合式反射镜
    3.
    实用新型

    公开(公告)号:CN203444129U

    公开(公告)日:2014-02-19

    申请号:CN201320582240.8

    申请日:2013-09-18

    Abstract: 本实用新型是关于一种复合式反射镜,属于太阳能热利用领域,所述复合式反射镜用于聚集太阳能,其包括:反射层、背板玻璃层和粘接于所述反射层与所述背板玻璃层之间的胶片层,所述复合式反射镜还包括电热组件,其包括:若干根电热丝,布设于所述胶片层内;输入汇流条,其输出端与所述的若干根电热丝的输入端连接;输出汇流条,其输入端与所述的若干根电热丝的输出端连接;输入导线,其输出端与所述输入汇流条的输入端连接,其输入端探出所述反射层、背板玻璃层和胶片层;以及输出导线,其输入端与所述输出汇流条的输出端连接,其输出端探出所述反射层、背板玻璃层和胶片层。该复合式反射镜具有电加热功能,使用寿命长。

    玻璃热弯模具
    4.
    实用新型

    公开(公告)号:CN203346259U

    公开(公告)日:2013-12-18

    申请号:CN201320372108.4

    申请日:2013-06-26

    CPC classification number: Y02P40/57

    Abstract: 本实用新型是关于一种玻璃热弯模具,其包括:主体,设有多个贯穿其上、下表面的通孔;以及框架型的玻璃边缘热弯部,其与所述主体连接,并且其上表面与所述主体的上表面共同形成玻璃成型面。本实用新型通过在玻璃热弯模具的主体部分设置通孔,减少了热弯模具所用材料,降低了模具生产成本,同时减少了模具对热量的吸收,在热弯过程中,玻璃热弯模具的上下表面之间能够形成热对流,有利于热弯过程中玻璃均匀受热成型,同时有助于模具自身热量的扩散,既延长了模具使用寿命又确保了玻璃的成型精度;由于存在通孔,该热弯模具在热弯过程中的热循环好,能够同时热弯多块玻璃,大幅度提高了生产效率;通孔的设置还大大减小了模具的重量,方便模具吊运。

    高光致折射率变化的光学玻璃、由该玻璃制备的光纤及其制备方法和应用

    公开(公告)号:CN113307490B

    公开(公告)日:2022-07-05

    申请号:CN202110609046.3

    申请日:2021-06-01

    Abstract: 本发明提供了一种高光致折射率变化的光学玻璃、由该玻璃制备的光纤及其制备方法和应用,所述光学玻璃按重量百分比计,含有以下组分:二氧化硅25%‑30%;三氧化二硼15‑25%;氧化铅0‑10%;氧化钡30‑40%;三氧化二镧和/或三氧化二钇0‑5%;氧化锌和/或三氧化二铝0‑5%。本发明所述的方法制备的光学玻璃,其折射率(nd)为:1.61~1.63,平均色散系数(阿贝数υd)为:58‑62;在深紫外波段具有极高的光吸收率,在180‑300nm波段的光谱透过率小于等于30%;在400‑2000nm范围内的光谱透过率大于等于95%;光通信波段(通常为1310nm或1550nm)具有极低的吸收率,即在1100‑1600nm波段的光谱透过率大于等于99%;经紫外激光辐照后,其折射率变化≥5×10‑3,最高可达1×10‑2,且随着氧化铅含量的增多,光致折射率变化增大。

    微纳光栅表面粗糙度的无损检测方法

    公开(公告)号:CN114264275A

    公开(公告)日:2022-04-01

    申请号:CN202111621883.4

    申请日:2021-12-28

    Abstract: 本发明公开了一种微纳光栅表面粗糙度的无损检测方法,包括如下步骤:用去离子水、无水乙醇和异丙醇对微纳光栅进行超声清洗,氮气吹干将三甲基氯硅烷滴到表面皿中,与微纳光栅一同置于真空干燥环境下,使三甲基氯硅烷充分钝化微纳光栅的表面;将固化剂加入聚二甲基硅氧烷中,混合均匀,消泡,得到PDMS混合物;将PDMS混合物倒在表面皿中,再将微纳光栅置于PDMS混合物表面,将附着PDMS混合物的微纳光栅置于真空干燥环境中脱气、固化,得到凝固仍带有微纳光栅的硅胶膜;将该硅胶膜与微纳光栅进行脱模,用硅胶模进行粗糙度测试。本发明可实现对微纳光栅表面难以测量的侧壁、槽底、深孔等复杂结构进行采集和复制,为复杂的微纳结构表面粗糙度测试提供了新思路。

Patent Agency Ranking