一种基于深度学习的融合多场景的危及器官的分割方法

    公开(公告)号:CN112508827A

    公开(公告)日:2021-03-16

    申请号:CN202011227685.5

    申请日:2020-11-06

    Abstract: 本发明公开了一种基于深度学习的融合多场景的危及器官的分割方法,本方法考虑到场景内数据的共性特征,分别对每一个数据集构建一个分割模型,获取每个数据集中的每个器官训练得到的第一最优子模型和第二最优子模型;对全部的数据集构建一个集成模型,通过全部的数据集对集成模型进行训练,同时在训练的过程中,将得到的全部第一最优子模型和第二最优子模型均作为特征提取器引入至集成模型,用于引导集成模型对不同场景下的数据的训练,使集成模型既关注分割器官的个性化特征,也关注到器官和背景间的差异,能够提高待分割器官检出率的同时,也能降低假阳的出现。

    一种基于深度学习的融合多场景的危及器官的分割方法

    公开(公告)号:CN112508827B

    公开(公告)日:2022-04-22

    申请号:CN202011227685.5

    申请日:2020-11-06

    Abstract: 本发明公开了一种基于深度学习的融合多场景的危及器官的分割方法,本方法考虑到场景内数据的共性特征,分别对每一个数据集构建一个分割模型,获取每个数据集中的每个器官训练得到的第一最优子模型和第二最优子模型;对全部的数据集构建一个集成模型,通过全部的数据集对集成模型进行训练,同时在训练的过程中,将得到的全部第一最优子模型和第二最优子模型均作为特征提取器引入至集成模型,用于引导集成模型对不同场景下的数据的训练,使集成模型既关注分割器官的个性化特征,也关注到器官和背景间的差异,能够提高待分割器官检出率的同时,也能降低假阳的出现。

Patent Agency Ranking