-
公开(公告)号:CN119417325A
公开(公告)日:2025-02-11
申请号:CN202510024801.X
申请日:2025-01-08
Applicant: 中国电子科技集团公司第五十四研究所 , 中南大学
IPC: G06Q10/067 , G06F16/29 , G06N3/084 , G06N3/048
Abstract: 本发明公开了耦合意图预测和环境约束的城市机动目标轨迹仿真方法,涉及多目标规划和轨迹模拟生成的交叉领域。本发明首先提取应用情景下的城市移动目标兴趣区域集合,之后提取路口节点、道路的地理环境要素以及自有属性,之后构建神经网络模型,进行深度学习训练,得到路口节点的奖励值,之后基于兴趣区域集合、各个机动目标的位置以及各个路口节点的奖励值,通过混合整数线性规划方法,计算机动目标轨迹仿真集合,完成耦合意图预测和环境约束的城市机动目标轨迹仿真。本发明克服了目前轨迹模拟方法真实性不强、情景泛化能力弱、对训练数据要求高和可解释性较低的问题,有效解决了特殊应用场景下多移动目标轨迹真实轨迹较少的问题。
-
公开(公告)号:CN103869367A
公开(公告)日:2014-06-18
申请号:CN201410113795.7
申请日:2014-03-25
Applicant: 中南大学
IPC: G01V1/30
Abstract: 本发明涉及一种基于共享密度的地震事件时空聚集模式提取方法。本发明根据时空窗口k邻近关系,识别时空共享邻近地震事件,进而依据时空共享邻近关系,估计时空共享密度,最后依据时空共享邻近关系将高密度地震事件聚集成簇。优点如下:不需要用户设定地震事件时空聚集模式的数目与形态,同时可以提取不同密度的地震事件时空聚集模式,可以从空间和时间耦合的视角发现地震事件的动态演变规律,将地震事件的时空聚集模式可视化表达。
-
公开(公告)号:CN103942325A
公开(公告)日:2014-07-23
申请号:CN201410176895.4
申请日:2014-04-29
Applicant: 中南大学
IPC: G06F17/30
CPC classification number: G06F17/30533
Abstract: 本发明公开了一种融合气候分区思想的海陆气候事件关联规则挖掘方法。本发明通过对空间数据建立Delaunay三角网并施加整体和局部长边约束,获得合理稳健的空间邻近关系网,进而度量空间邻近实体间时间序列的相似性,进行层次聚类得到多层次聚类结果,基于伪T统计量分析获得较佳气候分区结果;纳入相关领域先验知识约束,分别从海洋气候指数和各陆地气候区域提取感兴趣气候事件,进而通过施加时间窗口宽度约束、时间延迟约束、充分度和必要度约束,挖掘海陆气候事件间的有效关联规则。本发明在挖掘过程中可有效顾及多尺度效应得到有效气候区域,多重约束亦使得本发明在挖掘关联规则时具有高效性、针对性和实用性。
-
-