一种基于平行式字典学习的复杂工业过程监测方法和系统

    公开(公告)号:CN116125922B

    公开(公告)日:2024-06-21

    申请号:CN202310023849.X

    申请日:2023-01-09

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于平行式字典学习的复杂工业过程监测方法和系统,方法包括:根据各监测变量的方差膨胀因子,提取工业过程的共线性变量集;基于线性最大化方法从共线性变量集中划分线性变量子集,剩余监测变量构成非线性变量子集;对每个线性变量子集均基于字典学习建立线性监测模型,对非线性变量子集则基于核字典学习建立非线性监测模型;基于建立的线性和非线性监测模型计算重构误差,并计算各误差控制限;在线获取复杂工业过程的实时监测样本数据,计算各变量子集的重构误差;基于各重构误差和控制限,融合计算当前监测样本数据的全局指标,由全局指标判定当前工业过程是否故障。本发明可以实现对线性、非线性共存的复杂工业过程的监测。

    一种基于平行式字典学习的复杂工业过程监测方法和系统

    公开(公告)号:CN116125922A

    公开(公告)日:2023-05-16

    申请号:CN202310023849.X

    申请日:2023-01-09

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于平行式字典学习的复杂工业过程监测方法和系统,方法包括:根据各监测变量的方差膨胀因子,提取工业过程的共线性变量集;基于线性最大化方法从共线性变量集中划分线性变量子集,剩余监测变量构成非线性变量子集;对每个线性变量子集均基于字典学习建立线性监测模型,对非线性变量子集则基于核字典学习建立非线性监测模型;基于建立的线性和非线性监测模型计算重构误差,并计算各误差控制限;在线获取复杂工业过程的实时监测样本数据,计算各变量子集的重构误差;基于各重构误差和控制限,融合计算当前监测样本数据的全局指标,由全局指标判定当前工业过程是否故障。本发明可以实现对线性、非线性共存的复杂工业过程的监测。

Patent Agency Ranking