-
公开(公告)号:CN112194114A
公开(公告)日:2021-01-08
申请号:CN202011075668.4
申请日:2020-10-10
Applicant: 中北大学
IPC: C01B32/05 , H01M4/587 , H01M10/054 , B82Y30/00 , B82Y40/00
Abstract: 本发明提供了一种以木头为原料制备三维孔道结构的方法,属于电池负极材料技术领域。本发明方法用木头作为前驱体,通过化学处理、冷冻干燥、高温炭化等三个步骤得到了三维孔道结构。本发明调控的三维孔道结构具有优异的层次孔,作为电池和超级电容器的电极材料具有以下优点:1)可以有效地缩短离子的传输距离,并提供连续的电子传输路径;2)微孔可以为电解质离子提供大量的吸附位点,中孔可以提供快速的离子迁移通道,大孔可以将电解质存储在块状颗粒中,从而缩短了电解质离子从电解质到电极表面的传输距离。
-
公开(公告)号:CN111933957A
公开(公告)日:2020-11-13
申请号:CN202010671985.6
申请日:2020-07-14
Applicant: 中北大学
Abstract: 本发明涉及电催化氧还原反应技术领域,一种铝掺杂量可控的过渡金属氧化物的制备方法,根据所需铝掺杂量配置合适比例的过渡金属和铝,将过渡金属和铝熔融后制备成初始合金条带;获得的初始合金条带置于碱性溶液中进行脱铝处理,然后用水多次冲洗后烘干,得到具有不同铝掺杂量的过渡金属氢氧化物或羟基氧化物或碳酸化物;获得的具有不同铝掺杂量的过渡金属氢氧化物或羟基氧化物或碳酸化物置于退火炉中进行高温退火处理,获得铝掺杂量可控的过渡金属氧化物。
-
公开(公告)号:CN111217375A
公开(公告)日:2020-06-02
申请号:CN202010071870.3
申请日:2020-01-21
Applicant: 中北大学
IPC: C01B35/02 , B82Y40/00 , B82Y20/00 , C09K11/63 , C09K11/02 , H01M4/583 , H01M10/0525 , C01B32/168 , C01B32/198 , C01B32/194
Abstract: 本发明公开了一种硼量子点、及其稳定化处理方法和应用,属于功能材料技术领域,涉及硼量子点技术,解决硼量子点难以稳定存在于空气中这一技术问题。一种硼量子点稳定化处理方法,步骤为:(1)将分散在液相中的硼量子点溶液加入碳纳米管和石墨烯溶液中,制得混合液;(2)将混合液搅拌,超声破碎,离心收集沉淀物;(3)将沉淀物冷冻干燥,制得复合硼量子点样品;(4)将步骤(3)冷冻干燥后的样品在惰性环境下高温处理,使硼量子点稳定存在于碳纳米管和石墨烯中。与现有技术相比,本发明可获得得到稳定的硼量子点复合材料,使硼量子点稳定的存在于碳纳米管和石墨烯中。
-
公开(公告)号:CN109135735A
公开(公告)日:2019-01-04
申请号:CN201810847929.6
申请日:2018-07-27
Applicant: 中北大学
Abstract: 本发明公开了一种水溶性BCx量子点的制备方法,将含有硼碳元素的硼源与硼酸混匀后溶于去离子水,得到含有硼碳元素的混合水溶液,经超声分散、搅拌均匀后,在140~200℃条件下水热反应5~10h,得到的初产物溶液降至室温后,再使用硼氢化钠还原,然后依次进行洗涤、抽滤、离心后,收集上清液,得到荧光BCx量子点。本发明的制备方法操作简单,后处理方便、生产成本低、环境友好,所得水溶性BCx点尺寸均一,具有明亮的蓝色荧光,可以作为高效、低毒的生物细胞成像探针,具有大规模生产的潜力和广阔的商业应用前景。
-
公开(公告)号:CN109037768A
公开(公告)日:2018-12-18
申请号:CN201810741073.4
申请日:2018-07-08
Applicant: 中北大学
IPC: H01M10/0565 , H01M10/058 , H01M10/0525
CPC classification number: H01M10/0565 , H01M10/0525 , H01M10/058 , H01M2300/0065 , H01M2300/0088
Abstract: 本发明提供了一种全固态锂电池用星型微纳结构电解质膜及制备方法,电解质膜包含含有氧乙烯链段的功能性单体、聚倍半硅氧烷聚合物和有机锂盐。将含氧乙烯链段的功能性单体、聚倍半硅氧烷、引发剂溶于酯类溶剂和强极性混合溶剂中,通过化学接枝一步法制备得星型微纳结构聚合物基体;将其与有机锂盐溶于乙腈溶剂得悬浊液,流延成膜,真空干燥后得全固态聚物电解质膜。本发明中聚合物链段接枝在POSS基团上形成了特殊的星型结构,且POSS基团具有一定的空间位阻,能够为分子链段的运动提供自由空间,形成低能量、快速的离子传输通道,极大地促进了离子传输效率,因此该星型微纳固态电解质膜较其他线性结构固态电解质膜具有更优异的电导率。
-
公开(公告)号:CN106935709A
公开(公告)日:2017-07-07
申请号:CN201710312374.0
申请日:2017-05-05
Applicant: 中北大学
CPC classification number: Y02E10/549 , H01L51/441 , H01L51/0021 , H01L51/4226
Abstract: 本发明属于太阳能电池领域,具体是一种碳纤维布基背电极,以及基于碳纤维布为背电极制备的钙钛矿太阳能电池,还涉及所述碳纤维布基钙钛矿太阳能电池的制备方法。所述太阳能电池,其是由依次层叠设置的掺氟氧化锡玻璃基底、电子选择层、二氧化钛骨架层、钙钛矿结构材料吸光层、以及碳纤维布基背电极构成的。与现有技术比较,用嵌入碳涂层的碳纤维布电极替代了昂贵的真空蒸镀的金电极。本发明的碳纤维布基太阳能电池光电转化效率达到14.8%,在85 ℃高温、模拟太阳光辐照和最大能量点下,经100小时后光电转化效率保留起始效率一半。碳纤维布基钙钛矿太阳能电池制备步骤简单,成本低廉,高温条件下长期稳定性好,适用于大规模制备。
-
公开(公告)号:CN113363514B
公开(公告)日:2024-05-10
申请号:CN202110726906.1
申请日:2021-06-29
Applicant: 中北大学
Abstract: 本发明为一种金属空气电池用碳气凝胶负载钴单原子催化剂,属于金属空气电池技术领域。该催化剂载体为多孔碳气凝胶,多孔碳气凝胶比表面积为100~800 m2g‑1,孔径为2~100 nm,孔体积为0.05~1.0 cm3g‑1,活性组分为均匀分布在多孔碳气凝胶表面且与杂原子配位的钴单原子;所述催化剂的组成为:多孔碳气凝胶含量为67~95.95 wt%,钴单原子含量为0.05~8.0 wt%,杂原子含量为4~25 wt%。本发明催化剂中钴单原子含量高且分散均匀,物化结构稳定。其制备方法绿色简单且成本低;将其应用于金属空气电池,具有优异的充放电效率和循环寿命,性能优于商用的Pt/C催化剂。
-
公开(公告)号:CN111185171B
公开(公告)日:2022-10-21
申请号:CN202010056472.4
申请日:2020-01-18
Applicant: 中北大学
Abstract: 本发明公开了一种具有高活性、多响应碳点复合变价铜氧化合物纳米酶的制备方法,采用碳点粉、氨水、脲素和亚铜盐经过3个步骤制备获得碳点复合变价铜氧化合物纳米酶。本发明与现有技术相比,具有制备方法简单,能耗较低,有利于大规模工业化生产等优点。本发明制备的碳点复合变价铜氧化物纳米酶,具有强的类酶反应活性,并具有光、热及pH响应作用。
-
公开(公告)号:CN111217375B
公开(公告)日:2022-09-27
申请号:CN202010071870.3
申请日:2020-01-21
Applicant: 中北大学
IPC: C01B35/02 , B82Y40/00 , B82Y20/00 , C09K11/63 , C09K11/02 , H01M4/583 , H01M10/0525 , C01B32/168 , C01B32/198 , C01B32/194
Abstract: 本发明公开了一种硼量子点、及其稳定化处理方法和应用,属于功能材料技术领域,涉及硼量子点技术,解决硼量子点难以稳定存在于空气中这一技术问题。一种硼量子点稳定化处理方法,步骤为:(1)将分散在液相中的硼量子点溶液加入碳纳米管和石墨烯溶液中,制得混合液;(2)将混合液搅拌,超声破碎,离心收集沉淀物;(3)将沉淀物冷冻干燥,制得复合硼量子点样品;(4)将步骤(3)冷冻干燥后的样品在惰性环境下高温处理,使硼量子点稳定存在于碳纳米管和石墨烯中。与现有技术相比,本发明可获得得到稳定的硼量子点复合材料,使硼量子点稳定的存在于碳纳米管和石墨烯中。
-
公开(公告)号:CN111969193B
公开(公告)日:2022-09-09
申请号:CN202010870633.3
申请日:2020-08-26
Applicant: 中北大学
IPC: H01M4/38 , H01M4/62 , H01M10/0525
Abstract: 本发明公开了一种Si@MXene纳米复合材料及其制备方法,Si@MXene材料由MXenes和负载于其上的纳米硅,以及表面包覆的硬碳层组成。所述Si@MXene是由三维MXene与改性纳米硅溶液混合,滴加至有机聚合物溶液中,分离出固体产物并于惰性气氛下退火处理得到的复合材料。本方法能将MXene改变为三维结构后与改性硅复合,制备出纳米片孔隙和通道更大、层间距更大、活性位点更多的纳米复合材料,将该复合材料作为锂/钠离子电池负极材料,可以进一步提高电池的容量及倍率。
-
-
-
-
-
-
-
-
-