-
公开(公告)号:CN111192280A
公开(公告)日:2020-05-22
申请号:CN201911348067.3
申请日:2019-12-24
Applicant: 中北大学
Abstract: 本发明属于计算机图像处理技术领域,公开了一种基于局部特征的视盘边缘检测方法,通过筛选的局部待处理区域利用视盘形态特征进行邻接边界点查找,过程如下:(1)眼底图像预处理及合成,确定每像素点的特征值;(2)以每行平均最大特征值确定水平初值行,以差分求导求最值确定垂直初值,得到局部待处理区域S;(3)利用Sobel算子依次计算每一点的梯度G;(4)在水平初值行找到梯度极值,确定两个初始边界点;(5)从两个初始边界点出发,进行邻接边界点查找。本发明将整张眼底图像中视盘的识别问题分解为邻接边界点查找问题,有效降低了算法复杂度,提高了识别精度。
-
公开(公告)号:CN119903546A
公开(公告)日:2025-04-29
申请号:CN202411797183.4
申请日:2024-12-09
Applicant: 中北大学
IPC: G06F21/62 , G06V10/774 , G06V10/776 , G06V10/44 , G06V10/82 , G06N3/0464
Abstract: 本发明属于网络安全领域,旨在解决深度学习模型训练中存在未经授权者随意利用个人数据的问题。提供了一种防止投毒攻击的图像保护方法,包括以下步骤:获取目标类别数据集;提取目标类别数据集中不同类别的主导图像特征;将不同类别的主导图像特征作为扰动,对应添加至源类别数据集中的部分原始图像中,得到的中毒图像;将中毒图像随机插入源类别数据集中,替换相同数量的原始图像,得到中毒数据集;基于中毒数据集训练待投毒攻击的深度学习模型,并使用未中毒的源类别数据集进行模型验证;基于模型验证结果判断投毒攻击是否有效。本发明所提出的方法能够显著降低深度学习模型的准确率,从而有效遏制了未经授权方对数据的滥用。
-
公开(公告)号:CN111192280B
公开(公告)日:2022-10-18
申请号:CN201911348067.3
申请日:2019-12-24
Applicant: 中北大学
Abstract: 本发明属于计算机图像处理技术领域,公开了一种基于局部特征的视盘边缘检测方法,通过筛选的局部待处理区域利用视盘形态特征进行邻接边界点查找,过程如下:(1)眼底图像预处理及合成,确定每像素点的特征值;(2)以每行平均最大特征值确定水平初值行,以差分求导求最值确定垂直初值,得到局部待处理区域S;(3)利用Sobel算子依次计算每一点的梯度G;(4)在水平初值行找到梯度极值,确定两个初始边界点;(5)从两个初始边界点出发,进行邻接边界点查找。本发明将整张眼底图像中视盘的识别问题分解为邻接边界点查找问题,有效降低了算法复杂度,提高了识别精度。
-
-