金属粉末及其制造方法和烧结温度的预测方法

    公开(公告)号:CN112423912A

    公开(公告)日:2021-02-26

    申请号:CN201980043273.5

    申请日:2019-06-17

    Abstract: 本发明的课题之一在于提供一种含有硫的浓度或其分布受控的金属颗粒的金属粉末以及其制造方法。本发明提供一种制造金属粉末的方法。该方法包括:通过用氯使金属氯化来产生金属氯化物气体,以及通过在含硫气体存在下将作为气体的金属氯化物还原来产生金属颗粒。还原是以使金属颗粒中的硫的总体浓度成为0.01重量%以上1.0重量%以下,金属颗粒的距表面4nm的位置的硫的局部浓度成为2原子%以上的方式来进行的。总体浓度和局部浓度分别通过电感耦合等离子体发射光谱分析仪和设置在扫描透射电子显微镜中的能量色散X射线光谱分析仪来估计。

    金属粉末及其制造方法和烧结温度的预测方法

    公开(公告)号:CN112423912B

    公开(公告)日:2023-05-23

    申请号:CN201980043273.5

    申请日:2019-06-17

    Abstract: 本发明的课题之一在于提供一种含有硫的浓度或其分布受控的金属颗粒的金属粉末以及其制造方法。本发明提供一种制造金属粉末的方法。该方法包括:通过用氯使金属氯化来产生金属氯化物气体,以及通过在含硫气体存在下将作为气体的金属氯化物还原来产生金属颗粒。还原是以使金属颗粒中的硫的总体浓度成为0.01重量%以上1.0重量%以下,金属颗粒的距表面4nm的位置的硫的局部浓度成为2原子%以上的方式来进行的。总体浓度和局部浓度分别通过电感耦合等离子体发射光谱分析仪和设置在扫描透射电子显微镜中的能量色散X射线光谱分析仪来估计。

    铜粉体及其制造方法
    3.
    发明授权

    公开(公告)号:CN114786839B

    公开(公告)日:2024-03-26

    申请号:CN202080073528.5

    申请日:2020-11-12

    Abstract: 铜粉体的平均粒径D50为100nm以上且500nm以下,烧结起始温度为450℃以上,脱气的尖峰温度为150℃以上且300℃以下。此铜粉体在600℃以上且950℃以下的温度范围内脱离的气体的量(W1)相对于在60℃以上且950℃以下的温度范围内脱离的气体的总量(W0)之比(W1/W0)可以为0.6重量%以下。此铜粉体的平均微晶径(D)相对于平均粒径(D50)的比D/D50可以为0.10以上且0.50以下。

    铜粉体及其制造方法
    4.
    发明公开

    公开(公告)号:CN114786839A

    公开(公告)日:2022-07-22

    申请号:CN202080073528.5

    申请日:2020-11-12

    Abstract: 铜粉体的平均粒径D50为100nm以上且500nm以下,烧结起始温度为450℃以上,脱气的尖峰温度为150℃以上且300℃以下。此铜粉体在600℃以上且950℃以下的温度范围内脱离的气体的量(W1)相对于在60℃以上且950℃以下的温度范围内脱离的气体的总量(W0)之比(W1/W0)可以为0.6重量%以下。此铜粉体的平均微晶径(D)相对于平均粒径(D50)的比D/D50可以为0.10以上且0.50以下。

Patent Agency Ranking