-
公开(公告)号:CN113077382B
公开(公告)日:2024-01-12
申请号:CN202110457719.8
申请日:2021-04-27
Applicant: 东南大学
IPC: G06T3/04 , G06V40/16 , G06V10/774 , G06V10/77 , G06V10/82 , G06N3/0464 , G06N3/09
Abstract: 本发明公开了一种基于BEMD和深度学习的美颜图像还原方法,旨在从美颜图像中恢复出原始未美颜图像的亮度以及人脸上的皱纹、雀斑等信息,从而解决当今社会美颜图像的“照骗”所造成的社会信任危机。其主要操作过程是:首先,从IMDB‑WIKI人脸数据集中挑选照片,组成本发明的人像数据集。其次,构建一个成分递归神经网络模型,包含一个普通网络和若干个子网络,其输入是美颜图像,子网络的训练监督标签是原始未美颜图像经过BEMD得到的各个不同频率的分量。最后,对各个子网络的预测图像进行相加,得到还原图像。本发明方法通过构造成分递归网络,在恢复出图像整体轮廓信息的同时,也能够较好的恢复其中的细节信息。
-
公开(公告)号:CN113077382A
公开(公告)日:2021-07-06
申请号:CN202110457719.8
申请日:2021-04-27
Applicant: 东南大学
Abstract: 本发明公开了一种基于BEMD和深度学习的美颜图像还原方法,旨在从美颜图像中恢复出原始未美颜图像的亮度以及人脸上的皱纹、雀斑等信息,从而解决当今社会美颜图像的“照骗”所造成的社会信任危机。其主要操作过程是:首先,从IMDB‑WIKI人脸数据集中挑选照片,组成本发明的人像数据集。其次,构建一个成分递归神经网络模型,包含一个普通网络和若干个子网络,其输入是美颜图像,子网络的训练监督标签是原始未美颜图像经过BEMD得到的各个不同频率的分量。最后,对各个子网络的预测图像进行相加,得到还原图像。本发明方法通过构造成分递归网络,在恢复出图像整体轮廓信息的同时,也能够较好的恢复其中的细节信息。
-