-
公开(公告)号:CN107241106A
公开(公告)日:2017-10-10
申请号:CN201710371218.1
申请日:2017-05-24
Applicant: 东南大学
IPC: H03M13/13
Abstract: 本发明公开了一种基于深度学习的极化码译码算法,提出了多维度缩放Min‑sum置信度传播(Beliefpropagation)译码算法,用以加快译码算法收敛速度;然后根据BP算法的因子图与深度神经网络的相似性,实现了基于深度神经网络的极化码译码器,利用深度学习技术训练深度神经网络译码器,相比原始BP译码算法减少了近90%的译码迭代次数,同时取得了更好的译码性能;最后本发明给出了深度神经网络极化码译码器基本运算模块的硬件实现,并且利用硬件折叠技术减少了50%的硬件消耗。
-
公开(公告)号:CN107241106B
公开(公告)日:2020-07-14
申请号:CN201710371218.1
申请日:2017-05-24
Applicant: 东南大学
IPC: H03M13/13
Abstract: 本发明公开了一种基于深度学习的极化码译码算法,提出了多维度缩放Min‑sum置信度传播(Beliefpropagation)译码算法,用以加快译码算法收敛速度;然后根据BP算法的因子图与深度神经网络的相似性,实现了基于深度神经网络的极化码译码器,利用深度学习技术训练深度神经网络译码器,相比原始BP译码算法减少了近90%的译码迭代次数,同时取得了更好的译码性能;最后本发明给出了深度神经网络极化码译码器基本运算模块的硬件实现,并且利用硬件折叠技术减少了50%的硬件消耗。
-