-
公开(公告)号:CN109035255A
公开(公告)日:2018-12-18
申请号:CN201810677366.0
申请日:2018-06-27
Applicant: 东南大学
CPC classification number: G06T7/11 , G06N3/0454 , G06T7/136 , G06T2207/10081 , G06T2207/20081 , G06T2207/20084 , G06T2207/30101
Abstract: 本发明公开了一种基于卷积神经网络的CT图像中带夹层主动脉分割方法。本发明提出了结合三维卷积神经网络和二维卷积神经网络的CT带夹层主动脉分割算法,使用三维卷积神经网络将三维体数据分成两部分,再使用两个二维卷积神经网络分别对这两部分进行分割,得到最终的分割结果。本发明可以有效的从包含带夹层主动脉的CT图像中分割出带夹层的主动脉,克服了传统的单纯使用三维全卷积神经网络由于输入图像分辨率与GPU显存容量之间的矛盾导致分割精度上的不足,以及单纯使用二维卷积神经网络由于丢失三维信息导致的分割效果不稳定的缺陷,具有良好的分割效果。
-
公开(公告)号:CN109035255B
公开(公告)日:2021-07-02
申请号:CN201810677366.0
申请日:2018-06-27
Applicant: 东南大学
Abstract: 本发明公开了一种基于卷积神经网络的CT图像中带夹层主动脉分割方法。本发明提出了结合三维卷积神经网络和二维卷积神经网络的CT带夹层主动脉分割算法,使用三维卷积神经网络将三维体数据分成两部分,再使用两个二维卷积神经网络分别对这两部分进行分割,得到最终的分割结果。本发明可以有效的从包含带夹层主动脉的CT图像中分割出带夹层的主动脉,克服了传统的单纯使用三维全卷积神经网络由于输入图像分辨率与GPU显存容量之间的矛盾导致分割精度上的不足,以及单纯使用二维卷积神经网络由于丢失三维信息导致的分割效果不稳定的缺陷,具有良好的分割效果。
-
公开(公告)号:CN110176045A
公开(公告)日:2019-08-27
申请号:CN201910368259.4
申请日:2019-05-05
Applicant: 东南大学
Abstract: 本发明公开了一种由单能CT图像生成双能CT图像的方法。首先需要获取一定数量的双能CT图像;之后利用去噪卷积神经网络对双能CT图像进行去噪,得到去噪后的低能图像和高能图像;训练二维卷积神经网络,网络的输入为去噪后的低能图像,输出为去噪后高能图像和低能图像的差;利用去噪卷积神经网络对获得的CT图像进行去噪得到去噪后的单能CT图像;将去噪后的单能CT图像输入之前训练好的二维卷积神经网络得到估计的高低能图像差异,该差异与最初低能级下单能CT图像的和为估计的高能级CT图像;将最初低能级下单能CT图像和估计的高能级CT图像组合得到估计的双能CT图像。本发明可以有效的由单能CT图像估计双能CT图像,从而为临床诊断提供更多信息。
-
-