一种基于KPCA的工业过程故障诊断方法

    公开(公告)号:CN104914854A

    公开(公告)日:2015-09-16

    申请号:CN201510290378.4

    申请日:2015-05-29

    Applicant: 东北大学

    CPC classification number: G05B23/0235

    Abstract: 本发明涉及一种基于KPCA的工业过程故障诊断方法,对工业生产过程的历史正常数据利用KPCA方法提取出主元子空间的负载方向和残差子空间的负载方向,对已知故障的历史故障数据利用KPCA方法提取出主元子空间的负载方向和残差子空间的负载方向,对已知故障类型的历史故障数据进行基于T2统计量重构和基于SPE统计量重构,提取出历史故障数据针对T2统计量重构的故障特征方向和针对SPE统计量重构的故障特征方向,得到重构故障特征方向集合,实时采集工业生产过程的新数据,利用KPCA方法计算新数据的T2统计量和SPE统计量,判断实时采集的工业生产过程是否发生故障,利用重构故障特征方向集合对新数据进行故障方向重构,判断当前的工业生产过程的故障类型。

    一种基于KPCA的工业过程故障诊断方法

    公开(公告)号:CN104914854B

    公开(公告)日:2017-05-10

    申请号:CN201510290378.4

    申请日:2015-05-29

    Applicant: 东北大学

    Abstract: 本发明涉及一种基于KPCA的工业过程故障诊断方法,对工业生产过程的历史正常数据利用KPCA方法提取出主元子空间的负载方向和残差子空间的负载方向,对已知故障的历史故障数据利用KPCA方法提取出主元子空间的负载方向和残差子空间的负载方向,对已知故障类型的历史故障数据进行基于T2统计量重构和基于SPE统计量重构,提取出历史故障数据针对T2统计量重构的故障特征方向和针对SPE统计量重构的故障特征方向,得到重构故障特征方向集合,实时采集工业生产过程的新数据,利用KPCA方法计算新数据的T2统计量和SPE统计量,判断实时采集的工业生产过程是否发生故障,利用重构故障特征方向集合对新数据进行故障方向重构,判断当前的工业生产过程的故障类型。

Patent Agency Ranking