一种基于KPCA的工业过程故障诊断方法

    公开(公告)号:CN104914854B

    公开(公告)日:2017-05-10

    申请号:CN201510290378.4

    申请日:2015-05-29

    Applicant: 东北大学

    Abstract: 本发明涉及一种基于KPCA的工业过程故障诊断方法,对工业生产过程的历史正常数据利用KPCA方法提取出主元子空间的负载方向和残差子空间的负载方向,对已知故障的历史故障数据利用KPCA方法提取出主元子空间的负载方向和残差子空间的负载方向,对已知故障类型的历史故障数据进行基于T2统计量重构和基于SPE统计量重构,提取出历史故障数据针对T2统计量重构的故障特征方向和针对SPE统计量重构的故障特征方向,得到重构故障特征方向集合,实时采集工业生产过程的新数据,利用KPCA方法计算新数据的T2统计量和SPE统计量,判断实时采集的工业生产过程是否发生故障,利用重构故障特征方向集合对新数据进行故障方向重构,判断当前的工业生产过程的故障类型。

    一种基于田纳西伊斯曼过程的先验知识故障诊断方法

    公开(公告)号:CN107133642A

    公开(公告)日:2017-09-05

    申请号:CN201710284568.4

    申请日:2017-04-25

    Applicant: 东北大学

    Abstract: 本发明涉及一种基于田纳西伊斯曼过程的先验知识故障诊断方法,步骤为:采集田纳西伊斯曼过程的离线历史数据;选择调节参数矩阵U∈Rn×n和KNN算法中的k;在已有的加权无向图上构建邻接矩阵W,在此基础上算出矩阵D,定义拉普拉斯矩阵L=D‑W,根据拉普拉斯正则化算法,计算拉普拉斯正则项根据局部正则化算法,计算局部正则项(I‑A)T(I‑A),;根据计算标签矩阵;根据来标记未标记样本,归一化后得到工业过程的故障分类信息。本发明充分挖掘和利用标记样本和未标记样本特征信息建立故障诊断模型,用田纳西伊斯曼过程数据进行验证,其中在最后分类阶段,对分类器进行了改进,提高了分类的精度,同时对样本的错分率及样本分离度等验证标准都有所改进。

    一种基于KPCA的工业过程故障诊断方法

    公开(公告)号:CN104914854A

    公开(公告)日:2015-09-16

    申请号:CN201510290378.4

    申请日:2015-05-29

    Applicant: 东北大学

    CPC classification number: G05B23/0235

    Abstract: 本发明涉及一种基于KPCA的工业过程故障诊断方法,对工业生产过程的历史正常数据利用KPCA方法提取出主元子空间的负载方向和残差子空间的负载方向,对已知故障的历史故障数据利用KPCA方法提取出主元子空间的负载方向和残差子空间的负载方向,对已知故障类型的历史故障数据进行基于T2统计量重构和基于SPE统计量重构,提取出历史故障数据针对T2统计量重构的故障特征方向和针对SPE统计量重构的故障特征方向,得到重构故障特征方向集合,实时采集工业生产过程的新数据,利用KPCA方法计算新数据的T2统计量和SPE统计量,判断实时采集的工业生产过程是否发生故障,利用重构故障特征方向集合对新数据进行故障方向重构,判断当前的工业生产过程的故障类型。

Patent Agency Ranking