-
公开(公告)号:CN112348830B
公开(公告)日:2023-09-19
申请号:CN202011222552.9
申请日:2020-11-05
Applicant: 上海应用技术大学
IPC: G06T7/11 , G06T7/00 , G06T7/187 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06N3/084
Abstract: 本发明提供了一种基于改进3D U‑Net的多器官分割方法,包括以下步骤:(a)预处理待分割图像数据集;(b)基于待分割图像特征,构建基于3D U‑Net的多器官分割网络,并利用空间金字塔池化提取下采样层特征图的多尺度信息并与上采样层提取的特征信息通过快捷连接进行融合;(c)将预处理后的数据集划分为训练集,验证集,并利用改进后的3D U‑Net网络进行训练;(d)利用训练后的网络对测试集进行分割处理,并对分割后的图像进行后处理操作,得到最终的分割结果。本发明通过改进3D U‑Net网络的结构和损失函数,有效得解决了由于多器官尺度不均衡而引起的小器官分割精度较低的问题。
-
公开(公告)号:CN113012086A
公开(公告)日:2021-06-22
申请号:CN202110301849.2
申请日:2021-03-22
Applicant: 上海应用技术大学
Abstract: 本发明公开了一种跨模态图像的合成方法,包括:S1:接收不同模态的数据集,对各数据集中的图像数据进行预处理;S2:基于GAN神经网络中的GAN生成器和GAN判别器,将空洞卷积网络嵌入到U‑Net网络中形成Du‑Net生成器;S3:将训练集中的第一模态图像数据、第二模态图像数据输入到Du‑Net生成器中,得到第二合成模态图像数据;S4:将第二合成模态图像数据和第二模态图像数据输入到GAN判别器,生成跨模态图像合成模型;S4:将第一模态图像数据、第二模态图像数据输入到跨模态图像合成模型中,输出第二合成模态图像数据。本发明通过以GAN结构改进的Du‑Net生成器,有效提升伪模态图像的可信度,尤其是减小了伪模态图像与真实模态图像之间的平均绝对误差。
-
公开(公告)号:CN113012086B
公开(公告)日:2024-04-16
申请号:CN202110301849.2
申请日:2021-03-22
Applicant: 上海应用技术大学
IPC: G06T5/50 , G06T5/70 , G06N3/0455 , G06N3/0464 , G06N3/082 , G06N3/0475 , G06N3/084 , G06T5/60
Abstract: 本发明公开了一种跨模态图像的合成方法,包括:S1:接收不同模态的数据集,对各数据集中的图像数据进行预处理;S2:基于GAN神经网络中的GAN生成器和GAN判别器,将空洞卷积网络嵌入到U‑Net网络中形成Du‑Net生成器;S3:将训练集中的第一模态图像数据、第二模态图像数据输入到Du‑Net生成器中,得到第二合成模态图像数据;S4:将第二合成模态图像数据和第二模态图像数据输入到GAN判别器,生成跨模态图像合成模型;S5:将第一模态图像数据、第二模态图像数据输入到跨模态图像合成模型中,输出第二合成模态图像数据。本发明通过以GAN结构改进的Du‑Net生成器,有效提升伪模态图像的可信度,尤其是减小了伪模态图像与真实模态图像之间的平均绝对误差。
-
公开(公告)号:CN114581326B
公开(公告)日:2024-02-02
申请号:CN202210210048.X
申请日:2022-03-03
Applicant: 上海应用技术大学
Abstract: 本发明公开了一种OCT成像畸变矫正方法,包括如下步骤:获取原始图像序列,将所述原始图像序列的参考图像和待配准图像分别进行分块操作;基于参考图像和待配准图像进行特征匹配以获取每个块的偏移量;基于每个块的偏移量进行矫正,生成配准后图像并基于所有配准后图像和参考图像获得配准图像序列;基于配准图像序列通过预设算法获取校准效果图。在OCT扫描后,获取多张原始图像,选择其一作为参考图像,其余作为待配准图像,对所有原始图像进行分块操作,对所有待配准图像通过预设算法逐一进行图像配准,以实现对其图像的畸变问题进行矫正,获得校准后图像,再通过预设算法将参考图像和所有配准后图像生成校准后效果图,从而优化OCT图像的成像质量。
-
公开(公告)号:CN114581326A
公开(公告)日:2022-06-03
申请号:CN202210210048.X
申请日:2022-03-03
Applicant: 上海应用技术大学
Abstract: 本发明公开了一种OCT成像畸变矫正方法,包括如下步骤:获取原始图像序列,将所述原始图像序列的参考图像和待配准图像分别进行分块操作;基于参考图像和待配准图像进行特征匹配以获取每个块的偏移量;基于每个块的偏移量进行矫正,生成配准后图像并基于所有配准后图像和参考图像获得配准图像序列;基于配准图像序列通过预设算法获取校准效果图。在OCT扫描后,获取多张原始图像,选择其一作为参考图像,其余作为待配准图像,对所有原始图像进行分块操作,对所有待配准图像通过预设算法逐一进行图像配准,以实现对其图像的畸变问题进行矫正,获得校准后图像,再通过预设算法将参考图像和所有配准后图像生成校准后效果图,从而优化OCT图像的成像质量。
-
公开(公告)号:CN112348830A
公开(公告)日:2021-02-09
申请号:CN202011222552.9
申请日:2020-11-05
Applicant: 上海应用技术大学
Abstract: 本发明提供了一种基于改进3D U‑Net的多器官分割方法,包括以下步骤:(a)预处理待分割图像数据集;(b)基于待分割图像特征,构建基于3D U‑Net的多器官分割网络,并利用空间金字塔池化提取下采样层特征图的多尺度信息并与上采样层提取的特征信息通过快捷连接进行融合;(c)将预处理后的数据集划分为训练集,验证集,并利用改进后的3D U‑Net网络进行训练;(d)利用训练后的网络对测试集进行分割处理,并对分割后的图像进行后处理操作,得到最终的分割结果。本发明通过改进3D U‑Net网络的结构和损失函数,有效得解决了由于多器官尺度不均衡而引起的小器官分割精度较低的问题。
-
-
-
-
-