-
公开(公告)号:CN102457808B
公开(公告)日:2014-03-26
申请号:CN201010520243.X
申请日:2010-10-27
Abstract: 一种用于在异构网中提供MBMS服务的装置,采用该装置的异构网、以及接受MBMS服务的用户终端在异构网中切换的方法。所述异构网包括具有不同网络结构、采用不同通信协议的多个网络。所述提供MBMS服务的装置包括:信令接收单元,用于接收来自用户终端所要切换至的网络的网关的多媒体广播多播服务承载建立请求;信令产生和发送单元,用于产生和发送控制信令,所述控制信令用于在所述装置与所述网关间建立多媒体广播多播服务承载;以及多媒体广播多播业务数据提供单元,用于在所建立的多媒体广播多播服务承载上提供同步的多媒体广播多播业务数据。
-
公开(公告)号:CN102457808A
公开(公告)日:2012-05-16
申请号:CN201010520243.X
申请日:2010-10-27
Abstract: 一种用于在异构网中提供MBMS服务的装置,采用该装置的异构网、以及接受MBMS服务的用户终端在异构网中切换的方法。所述异构网包括具有不同网络结构、采用不同通信协议的多个网络。所述提供MBMS服务的装置包括:信令接收单元,用于接收来自用户终端所要切换至的网络的网关的多媒体广播多播服务承载建立请求;信令产生和发送单元,用于产生和发送控制信令,所述控制信令用于在所述装置与所述网关间建立多媒体广播多播服务承载;以及多媒体广播多播业务数据提供单元,用于在所建立的多媒体广播多播服务承载上提供同步的多媒体广播多播业务数据。
-
公开(公告)号:CN110334948A
公开(公告)日:2019-10-15
申请号:CN201910602681.1
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334865A
公开(公告)日:2019-10-15
申请号:CN201910602682.6
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN110334865B
公开(公告)日:2023-04-18
申请号:CN201910602682.6
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC: G06Q10/04 , G06Q10/0635 , G06Q10/20 , G06Q50/06 , G06F18/243 , G06F18/2415 , G06F18/214 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/084
Abstract: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN112307851A
公开(公告)日:2021-02-02
申请号:CN201910710454.0
申请日:2019-08-02
Applicant: 上海交通大学烟台信息技术研究院 , 上海交通大学
Abstract: 本发明公开了一种电力铁塔上鸟巢的识别方法,其包括训练步骤和识别步骤,训练步骤包括:S100:采集电力铁塔二维案例图像;S200:构建卷积神经网络并对其进行训练,以使卷积神经网络进行数据简化处理;S300:构建采用多个限制玻尔兹曼机堆叠形成的深度信念网络,将二维数据降维到含有电力铁塔图像特征的一维数据输入深度信念网络,采用一维数据对深度信念网络进行训练,以使深度信念网络输出识别结果;识别步骤包括:D100:将待识别的电力铁塔二维图像输入经过训练的卷积神经网络,卷积神经网络输出经过数据简化的二维数据;D200:将二维数据降维至一维数据输入经过训练的深度信念网络;D300:深度信念网络输出识别结果。
-
公开(公告)号:CN110334948B
公开(公告)日:2023-04-07
申请号:CN201910602681.1
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC: G06Q10/0635 , G06Q10/0639 , G06Q50/06 , G06F18/214 , G01R31/12
Abstract: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334866B
公开(公告)日:2022-11-11
申请号:CN201910602683.0
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
公开(公告)号:CN110334866A
公开(公告)日:2019-10-15
申请号:CN201910602683.0
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
公开(公告)号:CN117798171A
公开(公告)日:2024-04-02
申请号:CN202410045029.5
申请日:2024-01-11
Applicant: 中国电力工程顾问集团中南电力设计院有限公司 , 上海交通大学
Inventor: 马彦涛 , 杜征宇 , 李华 , 王辉 , 房小健 , 孙秦宇 , 张翔 , 王铠丰 , 曾志武 , 罗垚 , 杨洪 , 王奇 , 袁文超 , 史玉柱 , 薛文 , 吴少扬 , 赵素丽
Abstract: 本发明公开了一种风机叶片切割装置及切割方法。该装置包括用于传送风机叶片的传送带,所述传送带正上方设置有能够上下移动的液压杆,所述液压杆底部输出端设置有用于切割风机叶片的切割刀头;所述液压杆上方设置有防尘罩,所述传送带沿运行方向两侧面分别设置有透明护罩;所述传送带进口端和出口端上方分别设置有防尘挡板;所述防尘罩顶端连通有抽尘器,所述抽尘器出口连通有输尘管,且输尘管出口端连通有粉末储存器。本发明不仅实现叶片表面与内层的精准分离,达到叶片内层纤维低损伤可控切割的目的,而且将切割粉尘集中收集,避免粉尘散发至环境中造成危害。
-
-
-
-
-
-
-
-
-