-
公开(公告)号:CN109508248B
公开(公告)日:2021-08-20
申请号:CN201811353395.8
申请日:2018-11-14
Applicant: 上海交通大学 , 中国电信股份有限公司上海分公司
Abstract: 一种基于自组织映射神经网络的燃料系统故障的检测方法,通过从燃料系统的压力波形图中获取特征量经预处理后用于建立SOM网络,依次采用启发式算法优化网络结构,采用遗传算法优化网络参数;然后通过对SOM网络的神经元进行初始化并利用训练集对网络进行迭代训练;最后利用测试集进行故障检测识别。本发明能根据燃料系统的压力波形图提取特征量,在原始数据预处理后,通过确定网络结构和优化网络参数来建立对应的自组织映射神经网络模型,同时改善了网络参数初始化凭借经验选择的缺陷,善于应对燃气轮机故障诊断中出现的各类问题,对故障具有较高的识别度,具有重要的工程实用价值。
-
公开(公告)号:CN109508248A
公开(公告)日:2019-03-22
申请号:CN201811353395.8
申请日:2018-11-14
Applicant: 上海交通大学 , 中国电信股份有限公司上海分公司
Abstract: 一种基于自组织映射神经网络的燃料系统故障的检测方法,通过从燃料系统的压力波形图中获取特征量经预处理后用于建立SOM网络,依次采用启发式算法优化网络结构,采用遗传算法优化网络参数;然后通过对SOM网络的神经元进行初始化并利用训练集对网络进行迭代训练;最后利用测试集进行故障检测识别。本发明能根据燃料系统的压力波形图提取特征量,在原始数据预处理后,通过确定网络结构和优化网络参数来建立对应的自组织映射神经网络模型,同时改善了网络参数初始化凭借经验选择的缺陷,善于应对燃气轮机故障诊断中出现的各类问题,对故障具有较高的识别度,具有重要的工程实用价值。
-