一种基于空间结构的蛋白质相互作用预测方法

    公开(公告)号:CN110853702B

    公开(公告)日:2022-05-24

    申请号:CN201910979313.9

    申请日:2019-10-15

    Abstract: 本发明涉及一种基于空间结构的蛋白质相互作用预测方法,该方法包括如下步骤:(1)采集蛋白质三维空间结构标准数据;(2)构建蛋白质相互作用正、负样本数据集;(3)提取正、负样本数据集中的蛋白质三维空间结构标准数据的结构矩阵;(4)构建用于蛋白质相互作用预测的深度学习模型;(5)将正、负样本集中的结构矩阵输入至深度学习模型,训练深度学习模型;(6)获取目标蛋白质三维空间结构数据;(7)提取目标蛋白质三维空间结构数据的结构矩阵;(8)深度学习模型预测得到目标蛋白质相互作用的概率。与现有技术相比,本发明蛋白质三维空间结构数据能够提高模型对蛋白质相互作用的识别能力,大大提高蛋白质相互作用的预测准确性。

    一种基于空间结构的蛋白质相互作用预测方法

    公开(公告)号:CN110853702A

    公开(公告)日:2020-02-28

    申请号:CN201910979313.9

    申请日:2019-10-15

    Abstract: 本发明涉及一种基于空间结构的蛋白质相互作用预测方法,该方法包括如下步骤:(1)采集蛋白质三维空间结构标准数据;(2)构建蛋白质相互作用正、负样本数据集;(3)提取正、负样本数据集中的蛋白质三维空间结构标准数据的结构矩阵;(4)构建用于蛋白质相互作用预测的深度学习模型;(5)将正、负样本集中的结构矩阵输入至深度学习模型,训练深度学习模型;(6)获取目标蛋白质三维空间结构数据;(7)提取目标蛋白质三维空间结构数据的结构矩阵;(8)深度学习模型预测得到目标蛋白质相互作用的概率。与现有技术相比,本发明蛋白质三维空间结构数据能够提高模型对蛋白质相互作用的识别能力,大大提高蛋白质相互作用的预测准确性。

    一种基于深度学习的植物蛋白质互作网络构建方法

    公开(公告)号:CN110136773A

    公开(公告)日:2019-08-16

    申请号:CN201910262202.6

    申请日:2019-04-02

    Abstract: 本发明涉及一种基于深度学习的植物蛋白质互作网络构建方法,包括以下步骤:1)获取蛋白质互作对11个特征数据;2)筛选获得训练集及测试集;3)构建深度学习分类模型;4)对深度学习分类模型的参数进行批量优化,获得最佳优化参数组合的分类模型;5)根据最佳优化参数组合分类模型对全基因组所有可能两两互作蛋白对进行互作关系预测;6)根据互作关系预测结果构建蛋白质互作网络。与现有技术相比,本发明具有预测准确、建模效率高等优点。

Patent Agency Ranking