-
公开(公告)号:CN109360156B
公开(公告)日:2020-08-28
申请号:CN201810938304.0
申请日:2018-08-17
Applicant: 上海交通大学
Abstract: 本发明提供了一种基于生成对抗网络的图像分块的单张图像去雨方法,通过将图像划分成互不重叠的大小相同的图像块,将每个图像块作为条件生成对抗网络的输入,降低输入的维度;一个生成对抗网络被训练用来实现有雨图像块到无雨图像块的非线性映射,有效克服了许多细节部分被忽略的问题,并且可以尽可能地在每个尺度上去除雨线;为了更好地维持去雨图像块之间的结构、颜色等方面的一致性,引用了双边滤波器和非均值局部去噪算法,构建了新的误差函数,添加至条件生成对抗网络的总的误差函数中。本发明不需要任何先验知识,也不需要对图像进行预处理和后处理,保证了整个结构的完整性。在测试集上的结果显示本发明先比经典算法提高了4~7dB。
-
公开(公告)号:CN109360156A
公开(公告)日:2019-02-19
申请号:CN201810938304.0
申请日:2018-08-17
Applicant: 上海交通大学
Abstract: 本发明提供了一种基于生成对抗网络的图像分块的单张图像去雨方法,通过将图像划分成互不重叠的大小相同的图像块,将每个图像块作为条件生成对抗网络的输入,降低输入的维度;一个生成对抗网络被训练用来实现有雨图像块到无雨图像块的非线性映射,有效克服了许多细节部分被忽略的问题,并且可以尽可能地在每个尺度上去除雨线;为了更好地维持去雨图像块之间的结构、颜色等方面的一致性,引用了双边滤波器和非均值局部去噪算法,构建了新的误差函数,添加至条件生成对抗网络的总的误差函数中。本发明不需要任何先验知识,也不需要对图像进行预处理和后处理,保证了整个结构的完整性。在测试集上的结果显示本发明先比经典算法提高了4~7dB。
-