射电天文阵列的高可扩展性分布式DBF处理系统及方法

    公开(公告)号:CN105652326B

    公开(公告)日:2018-07-06

    申请号:CN201610018738.X

    申请日:2016-01-12

    Abstract: 本发明提供了一种射电天文阵列的高可扩展性分布式DBF处理系统及方法,实现了对通道采集、数据传输和DBF信号处理的完全解耦。在采集端,利用数字信道化处理、将宽带信号划分为多个窄带子信道;并对子信道进行灵活的分组合并,划分成若干子频段进行传输。在处理端,对接收到的多通道子频段信号进行窄带多波束DBF处理,最终获得窄带形式的多波束处理结果。本发明中的DBF处理架构采用分布式的系统设计,突破了集中式的系统架构中处理能力和传输带宽的限制,支持宽带、多通道、多波束的系统实现,而且具有配置灵活、高可扩展性的特点,非常适合大规模射电天文望远镜阵列使用。

    基于改进VFDF的实时宽带数字波束指向控制方法

    公开(公告)号:CN104883156B

    公开(公告)日:2017-09-08

    申请号:CN201410415231.9

    申请日:2014-08-21

    Abstract: 本发明公开了一种基于改进VFDF的实时宽带数字波束指向控制方法。该方法采用数字可编程延时单元作为波束指向控制的基本控制单元,可以方便地实现宽带实时的波束指向控制;采用数字移相的方式实现对变频器的本振相位补偿,可以适应具有变频功能的超外差通道结构;采用基于复数分解的改进VFDF实现精确的数字可编程延时单元,在不增加额外资源的前提下将数字移相的功能集成到数字可编程延时单元中,而且还有效降低了数字可编程延时单元的整体资源消耗。该方法既具备控制精度高、内存开销小、切换速度快、运行效率高、环境适应性好的优点,同时还通过优化VFDF的实现方式,实现了资源消耗上的节省。

    一种分数延迟数字滤波器的实现结构

    公开(公告)号:CN102624357A

    公开(公告)日:2012-08-01

    申请号:CN201210072562.8

    申请日:2012-03-19

    Abstract: 本发明提出了一种分数延迟数字滤波器的实现结构。这种结构基于对分数延迟数字滤波器的频率响应函数中自变量z的奇数次和偶数次项的分解,将高阶的分数延迟滤波运算分解为两个低阶的分数延迟滤波运算和一个复数乘法运算,减少了以延迟参数为自变量的目标拟合曲线的变化范围,进而降低了曲线拟合阶数,减少了滤波器抽头个数,从而在不降低延迟精度的情况下,减少了分数延迟数字滤波器实现所需的硬件资源。

    射电天文阵列远程光纤同步系统及其方法

    公开(公告)号:CN105680970A

    公开(公告)日:2016-06-15

    申请号:CN201610025611.0

    申请日:2016-01-15

    CPC classification number: H04J3/0638 H03L7/08 H04J3/0682

    Abstract: 一种射电天文阵列远程光纤同步系统及其方法,包括:设置于本地节点的本地锁相控制模块和设置于远程节点的时钟净化模块,其中:远程节点和本地节点通过光纤相连,本地节点将本地参考时钟和从时钟净化模块接收到的本地光纤接收时钟输入本地锁相控制模块,通过PID控制本地参考时钟进行相位调整得到本地光纤发送时钟,从而实现光纤温漂补偿,本发明通过数字化方式进行光纤温漂补偿,具有时钟同步精度高,达到皮秒量级,环境适应能力强,成本低廉,采用数字化方式传输时钟信息,抗干扰能力强,传输距离长,只需一路光纤通路就可以实现采样时钟、采样数据、系统控制指令的传输,从而实现了高度的系统集成,降低了光纤布线的复杂度。

    射电天文阵列的高可扩展性分布式DBF处理系统及方法

    公开(公告)号:CN105652326A

    公开(公告)日:2016-06-08

    申请号:CN201610018738.X

    申请日:2016-01-12

    CPC classification number: G01V3/12

    Abstract: 本发明提供了一种射电天文阵列的高可扩展性分布式DBF处理系统及方法,实现了对通道采集、数据传输和DBF信号处理的完全解耦。在采集端,利用数字信道化处理、将宽带信号划分为多个窄带子信道;并对子信道进行灵活的分组合并,划分成若干子频段进行传输。在处理端,对接收到的多通道子频段信号进行窄带多波束DBF处理,最终获得窄带形式的多波束处理结果。本发明中的DBF处理架构采用分布式的系统设计,突破了集中式的系统架构中处理能力和传输带宽的限制,支持宽带、多通道、多波束的系统实现,而且具有配置灵活、高可扩展性的特点,非常适合大规模射电天文望远镜阵列使用。

    一种分数延迟数字滤波器的实现结构

    公开(公告)号:CN102624357B

    公开(公告)日:2014-10-15

    申请号:CN201210072562.8

    申请日:2012-03-19

    Abstract: 本发明提出了一种分数延迟数字滤波器的实现结构。这种结构基于对分数延迟数字滤波器的频率响应函数中自变量z的奇数次和偶数次项的分解,将高阶的分数延迟滤波运算分解为两个低阶的分数延迟滤波运算和一个复数乘法运算,减少了以延迟参数为自变量的目标拟合曲线的变化范围,进而降低了曲线拟合阶数,减少了滤波器抽头个数,从而在不降低延迟精度的情况下,减少了分数延迟数字滤波器实现所需的硬件资源。

    射电天文阵列远程光纤同步系统及其方法

    公开(公告)号:CN105680970B

    公开(公告)日:2018-03-06

    申请号:CN201610025611.0

    申请日:2016-01-15

    Abstract: 一种射电天文阵列远程光纤同步系统及其方法,包括:设置于本地节点的本地锁相控制模块和设置于远程节点的时钟净化模块,其中:远程节点和本地节点通过光纤相连,本地节点将本地参考时钟和从时钟净化模块接收到的本地光纤接收时钟输入本地锁相控制模块,通过PID控制本地参考时钟进行相位调整得到本地光纤发送时钟,从而实现光纤温漂补偿,本发明通过数字化方式进行光纤温漂补偿,具有时钟同步精度高,达到皮秒量级,环境适应能力强,成本低廉,采用数字化方式传输时钟信息,抗干扰能力强,传输距离长,只需一路光纤通路就可以实现采样时钟、采样数据、系统控制指令的传输,从而实现了高度的系统集成,降低了光纤布线的复杂度。

    基于改进VFDF的实时宽带数字波束指向控制方法

    公开(公告)号:CN104883156A

    公开(公告)日:2015-09-02

    申请号:CN201410415231.9

    申请日:2014-08-21

    Abstract: 本发明公开了一种基于改进VFDF的实时宽带数字波束指向控制方法。该方法采用数字可编程延时单元作为波束指向控制的基本控制单元,可以方便地实现宽带实时的波束指向控制;采用数字移相的方式实现对变频器的本振相位补偿,可以适应具有变频功能的超外差通道结构;采用基于复数分解的改进VFDF实现精确的数字可编程延时单元,在不增加额外资源的前提下将数字移相的功能集成到数字可编程延时单元中,而且还有效降低了数字可编程延时单元的整体资源消耗。该方法既具备控制精度高、内存开销小、切换速度快、运行效率高、环境适应性好的优点,同时还通过优化VFDF的实现方式,实现了资源消耗上的节省。

Patent Agency Ranking