-
公开(公告)号:CN116227756A
公开(公告)日:2023-06-06
申请号:CN202310517345.3
申请日:2023-05-10
Applicant: 北京航空航天大学 , 北京市西城区科学技术和信息化局(北京市西城区大数据管理局)
Abstract: 本发明属于基于特定计算模型的机器学习技术领域,具体为一种城市时空数据预测因果模型的评价方法,包括构建城市时空数据预测因果模型并采用城市用电数据集进行学习,利用神经网络搭建城市时空数据预测因果模型的学习框架对城市时空数据预测因果模型进行训练,采用训练后的城市时空数据预测因果模型,使用城市用电历史数据来预测下一时间段用电数据,使用均方根误差、平均绝对误差和平均绝对百分比误差三个指标来评价训练后的城市时空数据预测因果模型性能,本方法采用合理的训练、验证、预测评价比例,提高了评价效果。
-
公开(公告)号:CN116307293A
公开(公告)日:2023-06-23
申请号:CN202310572084.5
申请日:2023-05-22
Applicant: 北京航空航天大学 , 北京市西城区科学技术和信息化局(北京市西城区大数据管理局)
IPC: G06Q10/04 , G06Q10/0631 , G06Q50/26 , G06Q50/30 , G06F16/9537 , G06N3/0442 , G06N3/048 , G06N3/084
Abstract: 本发明属于智能城市技术领域,公开了一种基于混杂感知与因果去偏的城市时空数据预测方法。该方法构建了基于混杂感知与因果去偏的深度学习模型(CADN),将历史城市时空数据经过预处理转化为各区域分时段观测数据,输入深度学习模型,对各区域未来城市时空数据进行预测。本发明的深度学习模型将输入的历史观测数据经时域因果去偏模块提取无偏的时域因果特征,再经过空域因果传递模块提取无偏的时空因果特征,最后经融合预测器输出预测结果。本发明对于城市中的时空数据预测准确性高,具有鲁棒性。
-
公开(公告)号:CN116307275A
公开(公告)日:2023-06-23
申请号:CN202310558821.6
申请日:2023-05-18
Applicant: 北京航空航天大学 , 北京市西城区科学技术和信息化局(北京市西城区大数据管理局)
Abstract: 本发明属于智能交通技术领域,公开了一种基于空域因果传递的自行车流量预测方法。该方法利用门控循环单元提取时域特征,并且设计了可学习的因果嵌入向量,以此构建区域间的因果传递矩阵,并利用区域间距离和交互量等先验知识,构建相应的图结构作为归纳偏置,进而通过空域因果传递过程,得到时空因果特征;最后通过预测模块输出预测结果。本发明的预测方法消除了非因果关联区域间的空域虚假相关性,有效地提升了自行车流量预测的准确性。
-
公开(公告)号:CN116205384A
公开(公告)日:2023-06-02
申请号:CN202310497666.1
申请日:2023-05-06
Applicant: 北京航空航天大学 , 北京市西城区科学技术和信息化局(北京市西城区大数据管理局)
IPC: G06Q10/04 , G06Q50/26 , G06N5/04 , G06N3/0464 , G06N3/0442 , G06N3/0455 , G06N3/048 , G06N3/047 , G06N3/08
Abstract: 本发明属于城市数据的预测或优化技术领域,具体公开了一种基于生成因果解释模型的城市数据预测方法,所述生成因果解释模型包括外生变量、时空条件父变量、受控因果转移函数和时空混合函数,通过从观测数据中推断出模型外生变量,因果描述子,时空条件父变量等因果隐变量并拟合受控因果转移函数和时空混合函数等相应函数后,基于模型预测城市级时空数据,本发明可以将城市复杂系统的观测数据分解为具有物理含义的因果描述子,在稳定的因果结构影响下,可以提升模型整体的鲁棒性和适用性,使得预测结果更加符合城市复杂系统运行情况。
-
公开(公告)号:CN115691137A
公开(公告)日:2023-02-03
申请号:CN202211357946.4
申请日:2022-11-01
Applicant: 北京航空航天大学 , 北京市大数据中心 , 北京市西城区科学技术和信息化局(北京市西城区大数据管理局)
IPC: G08G1/01 , G06Q10/04 , G06Q50/30 , G06N3/0442 , G06N3/08
Abstract: 本发明提供了一种基于因果马尔科夫模型的多模态数据预测方法,属于智能交通技术领域。本发明方法包括:采集研究区域的区域数据和多模态交通数据,将时间点、区域兴趣点和天气信息视为背景特征变量,将区域吸引力因子、自行车需求因子、出租车需求因子、公交车需求因子、交通速度因子视为物理概念变量,将自行车流量、出租车流量、公交车流量、区域速度视为多模态交通数据观测变量,利用因果马尔科夫过程描述多模态交通量的生成过程;利用神经网络求解因果马尔科夫过程,训练搭建的神经网络,用于多模态交通数据观测。本发明能够有效地预测多模态交通流,并提升了预测准确度,可进一步用于指导管理人员制定相关交通诱导策略。
-
公开(公告)号:CN115938103B
公开(公告)日:2024-06-18
申请号:CN202211358315.4
申请日:2022-11-01
Applicant: 北京航空航天大学 , 北京市大数据中心 , 北京市西城区科学技术和信息化局(北京市西城区大数据管理局)
Abstract: 本发明提供了一种基于增量学习的时空流式数据预测方法,用于智能交通流预测。本发明方法包括:采集时空流式数据,形成时间序列数据和图数据作为预测模型的输入;建立包括时间规律捕捉模块和空间规律捕捉模块的预测模型,两模块正交,网络参数相互独立;建立增量学习模型,对多批次的时空流式数据增量学习进行约束,利用新预测模型对新批次数据进行预测。本发明方法缓解了时空预测模型在时空流式数据上的灾难性遗忘,提升了预测模型对未来在线任务的前向迁移效果,提高了对时空流式数据的预测精度,适用于时空流式数据的预测任务。
-
公开(公告)号:CN116740949A
公开(公告)日:2023-09-12
申请号:CN202311027776.8
申请日:2023-08-16
Applicant: 北京航空航天大学 , 北京市西城区科学技术和信息化局(北京市西城区大数据管理局)
IPC: G08G1/01 , G06F18/24 , G06F18/23213 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及一种基于持续学习的时空因果预测的城市交通数据预测方法,属于城市时空数据预测技术领域,解决了现有技术对城市交通数据预测不准确、训练及预测所需的时间和硬件资源过多,难以满足对城市交通数据预测的实际应用需求的问题。本发明的任务数据为多批次任务的实时数据,构建时空历史记忆库,分类筛选出能代表旧的任务数据分布的时序数据和图数据,满足前向迁移需求,预测效果准确;结合模型权重的正交参数空间,从时空历史记忆库中计算出正交投影算子,实现在新任务上训练时在正交参数空间中更新参数,在旧任务上的预测效果稳定,高效利用过去的城市交通数据,节省训练及预测所需的时间和硬件资源,满足预测的实际应用需求。
-
公开(公告)号:CN116204792B
公开(公告)日:2023-07-14
申请号:CN202310473305.3
申请日:2023-04-28
Applicant: 北京航空航天大学 , 北京市西城区科学技术和信息化局(北京市西城区大数据管理局)
IPC: G06F18/214 , G06N20/00
Abstract: 本发明属于基于特定计算模型的机器学习技术领域,具体为一种生成因果解释模型的训练方法,包括构建生成因果解释模型,利用神经网络搭建生成因果解释模型的训练框架,并将生成因果解释模型的可识别性条件作为神经网络的约束条件,采集不同时刻各区域的观测数据,对生成因果解释模型进行训练,本发明基于生成因果解释模型GCIM的可识别条件,提出了一种基于变分推断的生成因果解释模型学习框架,进一步了提升模型的可解释性,提升整体的泛化能力。
-
公开(公告)号:CN116227756B
公开(公告)日:2023-07-07
申请号:CN202310517345.3
申请日:2023-05-10
Applicant: 北京航空航天大学 , 北京市西城区科学技术和信息化局(北京市西城区大数据管理局)
Abstract: 本发明属于基于特定计算模型的机器学习技术领域,具体为一种城市时空数据预测因果模型的评价方法,包括构建城市时空数据预测因果模型并采用城市用电数据集进行学习,利用神经网络搭建城市时空数据预测因果模型的学习框架对城市时空数据预测因果模型进行训练,采用训练后的城市时空数据预测因果模型,使用城市用电历史数据来预测下一时间段用电数据,使用均方根误差、平均绝对误差和平均绝对百分比误差三个指标来评价训练后的城市时空数据预测因果模型性能,本方法采用合理的训练、验证、预测评价比例,提高了评价效果。
-
公开(公告)号:CN116307274A
公开(公告)日:2023-06-23
申请号:CN202310558819.9
申请日:2023-05-18
Applicant: 北京航空航天大学 , 北京市西城区科学技术和信息化局(北京市西城区大数据管理局)
Abstract: 本发明属于城市能耗管理技术领域,公开了一种考虑因果干预的城市区域能耗预测方法。该方法建立考虑因果干预的深度学习模型,通过时域特征提取子网络将历史城市区域能耗样本数据按照混杂因素分层,再经并行的时域编码器分别提取时域特征,最后通过后门调整公式去除时域虚假相关性并生成无偏的时域特征。利用空域特征提取子网络提取时空特征,输入到耗预测模块实现未来城市区域能耗的预测。该方法能够从城市区域能耗样本数据中挖掘潜在的时域混杂因素,消除了时域上的混杂偏倚,有效地提升了预测的准确性。
-
-
-
-
-
-
-
-
-