一种基于相位迭代最小化的傅里叶叠层成像图像重建方法

    公开(公告)号:CN108550108B

    公开(公告)日:2020-11-03

    申请号:CN201710898958.0

    申请日:2017-09-28

    Applicant: 武汉大学

    Inventor: 田昕 李松

    Abstract: 本发明属于傅里叶叠层成像技术领域,具体涉及一种基于相位迭代最小化的傅里叶叠层成像图像重建方法。包括以下步骤:S1,生成一系列低分辨率子图像对应的幅度子图像;S2,获取重建算法参数,包括每幅低分辨率幅度子图像生成的频谱在高分辨率重建频谱中的位置,瞳孔函数等,建立低分辨率幅度子图像和高分辨率重建图像之间的联系;S3,将相位恢复作为优化目标之一,生成图像重建目标优化的目标函数,并通过迭代最小化进行求解,获得高分辨率重建图像频谱;S4,对高分辨率重建图像频谱进行傅里叶反变换,将结果的模作为高分辨率重建后的图像。本发明通过相同数目的低分辨率子图像进行高分辨率图像重建,具有更好的重建强度图像质量。

    一种星载单光子激光雷达的最大测量深度评估方法

    公开(公告)号:CN111239713A

    公开(公告)日:2020-06-05

    申请号:CN202010191902.3

    申请日:2020-03-18

    Applicant: 武汉大学

    Abstract: 本发明提出了一种星载单光子激光雷达的最大测量深度评估方法。计算单光子激光雷达进行水深测量时所采集的水下目标平均信号光子数量;计算由大气散射太阳背景光导致的噪声光子频率;计算由水面泡沫反射太阳背景光导致的噪声光子频率;计算由水面镜面反射太阳背景光导致的噪声光子频率;计算由水体粒子散射太阳背景光导致的噪声光子频率;计算由水体粒子散射太阳背景光导致的噪声光子频率;计算由水体粒子散射单光子激光雷达发射的激光脉冲导致的平均噪声数量;计算单发脉冲总噪声光子数量;计算待测量水深的具体数值,将待测量水深的具体数值作为单光子激光雷达系统的最大测深深度。本发明可以快速准确地计算最大测深能力。

    针对陆地目标的激光测高仪大气延迟测距误差修正方法

    公开(公告)号:CN107037439B

    公开(公告)日:2020-05-12

    申请号:CN201710194273.8

    申请日:2017-03-28

    Abstract: 本发明属于激光遥感技术领域,特别涉及一种针对陆地目标的星载激光测高系统大气延迟误差修正方法。本发明首先推导了大气延迟误差与地表大气压强之间的理论关系式,进而简化了压高方程,根据地面气象站测得的气象站所在高度气压、海平面高度气压,计算每个气象站气压衰减因子,建立气压随高度变化的衰减模型。依据激光脚点的经纬度选取距离最近的k个气象站,根据气压衰减模型,计算每个气象站所在位置在待插值点海拔高度处的气压;根据反距离加权算法,计算待插值点地理位置处的气压。交叉验证结果表明,该方法的气压时空内插的精度高于目前基于NECP再分析资料的计算方法,在我国激光测高卫星的测量精度提高方面具有重要应用价值。

    星载激光测高仪在轨标定的激光角反射器口径优化方法

    公开(公告)号:CN110554372A

    公开(公告)日:2019-12-10

    申请号:CN201910811658.3

    申请日:2019-08-30

    Applicant: 武汉大学

    Abstract: 本发明提供一种星载激光测高仪在轨标定的激光角反射器口径优化方法,其特征在于:包括首先利用卫星轨道高度及卫星飞行速度,得到卫星速差角;然后基于卫星速差角和发射激光波长设置CCR口径的搜索范围;根据星载激光测高仪标定时的初始参数,计算CCR反射脉冲回波和地面反射脉冲回波分别的幅值、时间重心和均方根脉宽;计算地面反射脉冲回波和CCR反射脉冲回波的巴氏距离;最后依据接收系统的探测范围和巴氏距离的阈值条件,优化搜索得到CCR最佳口径。本发明不仅可以有效防止CCR反射脉冲回波发生漏探或饱和现象,而且可以保证CCR反射脉冲回波与地面反射脉冲回波不产生混叠,因而这种方法能适用于所有脉冲式星载激光测高仪的距离标定。

    一种基于超表面材料的多档静态变焦透镜

    公开(公告)号:CN110412761A

    公开(公告)日:2019-11-05

    申请号:CN201810430617.5

    申请日:2018-05-08

    Applicant: 武汉大学

    Abstract: 本发明公开了一种基于超表面材料的多档静态变焦透镜,该变焦透镜由透镜1和透镜2以及变档遮光片组成,并在激光束入射的方向依次设有起偏器和1/4波片。透镜1和透镜2由在透明基底两侧刻蚀纳米砖阵列的超表面透镜构成,纳米砖的朝向角根据其距离透镜圆心的距离而确定。透镜表面被平均分为多个档的区域,分别具有不同的焦距值,该变焦透镜仅需转动变档遮光片即可实现多档变焦功能,并能够实现变焦后的像面位置不变。这种多档静态变焦透镜具有变焦简单、体积小、重量轻、高度集成、加工便捷等优势。

    金属纳米砖阵列结构及其用作偏振分光器的应用

    公开(公告)号:CN107783309B

    公开(公告)日:2019-10-11

    申请号:CN201711185063.9

    申请日:2017-11-23

    Applicant: 武汉大学

    Abstract: 本发明公开了一种金属纳米砖阵列结构及其用作偏振分光器的应用,所述金属纳米砖阵列结构,包括衬底和衬底上的金属纳米砖阵列;所述金属纳米砖阵列由金属纳米砖单元排列构成;所述金属纳米砖单元包括沿金属纳米砖宽的方向、等间隔排列成一列的、若干尺寸一致的金属纳米砖;所述金属纳米砖为长方体形且为亚波长尺寸。将所述金属纳米砖阵列结构用作偏振分光器,在可见光波段490nm~590nm可达到90%以上的分光效率,在475nm~765nm波段可达到80%以上的分光效率。另外,利用金属纳米砖阵列结构的偏振分光器还具有体积小、重量轻、结构紧凑、易于集成等优势。

    星载激光测高仪有源光斑能量探测器及阵列

    公开(公告)号:CN110231089A

    公开(公告)日:2019-09-13

    申请号:CN201910438854.0

    申请日:2019-05-24

    Applicant: 武汉大学

    Abstract: 本发明提供星载激光测高仪有源光斑能量探测器及阵列,用于采用阵列的方式,实现对激光脚点光斑的捕获,能量探测器包括电检测模块、通信模块、几何定位模块、时间同步模块和主控制器,所述光电检测模块用于通过高速稳定放大倍数可调的光电转换,再通过以高速阈值比较为基础的模数转换,实现星载激光测高仪地面脚点光斑的能量捕获;所述通信模块用于实现能量探测器的数据和指令传输,以实现探测器阵列的智能化数据组网;所述时间同步模块用于以GPS提供的秒脉冲为输入,结合高精度定时器和后续时间补偿,实现对脚点光斑捕获时刻的精确测量;所述几何定位模块用于将GPS单点定位与外部差分站共同协作,以差分后处理的方式实现静态单点定位达到亚米级别。

    一种将倏逝波转化为行波的方法

    公开(公告)号:CN107870446B

    公开(公告)日:2019-06-11

    申请号:CN201711016184.0

    申请日:2017-10-25

    Applicant: 武汉大学

    Abstract: 本发明提供一种将倏逝波转化为行波的方法,利用偏振独立型纳米砖阵列构成的超表面光栅实现,通过对纳米砖长度和宽度尺寸参数的调整,设计相位梯度并构造超表面光栅,可以对分别沿纳米砖长轴和短轴方向偏振入射的光波实现不同的横向波矢改变量,进而将倏逝波转化为行波传递至远场,实现超分辨成像。这种纳米砖阵列构成的超表面具有高度集成、透射率高、加工工艺相对简单等突出优势,可应用于生物医学显微成像、光学光刻、超高密度光存储等领域。

    一种基于自适应光谱-空间梯度稀疏正则化的多光谱图像融合方法

    公开(公告)号:CN109859153A

    公开(公告)日:2019-06-07

    申请号:CN201910049204.7

    申请日:2019-01-18

    Applicant: 武汉大学

    Abstract: 本发明公开了一种基于自适应光谱-空间梯度稀疏正则化的多光谱遥感图像与全色图像的融合方法,包括如下步骤:步骤1:获得同一时间同一地理区域已配准的多光谱图像和全色图像;步骤2:基于步骤1的结果,对融合图像进行下采样,获得融合图像和多光谱图像的l2范数;步骤3:计算融合图像和复制的全色图像的差值图像在空间和光谱方向上的梯度和权重矩阵,从而获得融合图像和全色图像的l1范数;步骤4:基于步骤2和步骤3,获得融合图像与多光谱图像,全色图像的能量函数,并迭代求解获得融合图像。本发明主要针对多光谱遥感图像与全色图像融合的应用需求,考虑到多光谱图像的光谱一致特性和空间梯度稀疏特性。

    一种基于相位迭代最小化的傅里叶叠层成像图像重建方法

    公开(公告)号:CN108550108A

    公开(公告)日:2018-09-18

    申请号:CN201710898958.0

    申请日:2017-09-28

    Applicant: 武汉大学

    Inventor: 田昕 李松

    Abstract: 本发明属于傅里叶叠层成像技术领域,具体涉及一种基于相位迭代最小化的傅里叶叠层成像图像重建方法。包括以下步骤:S1,生成一系列低分辨率子图像对应的幅度子图像;S2,获取重建算法参数,包括每幅低分辨率幅度子图像生成的频谱在高分辨率重建频谱中的位置,瞳孔函数等,建立低分辨率幅度子图像和高分辨率重建图像之间的联系;S3,将相位恢复作为优化目标之一,生成图像重建目标优化的目标函数,并通过迭代最小化进行求解,获得高分辨率重建图像频谱;S4,对高分辨率重建图像频谱进行傅里叶反变换,将结果的模作为高分辨率重建后的图像。本发明通过相同数目的低分辨率子图像进行高分辨率图像重建,具有更好的重建强度图像质量。

Patent Agency Ranking