高热流密度太阳能全谱辐射加热装置

    公开(公告)号:CN103234998A

    公开(公告)日:2013-08-07

    申请号:CN201310145961.7

    申请日:2013-04-25

    Abstract: 本发明提供一种高热流密度太阳能全谱辐射加热装置,电动狭缝、菲涅尔平面聚光透镜、二次棱镜、调整支架、石英窗口、三维旋转支架、追日子系统、电磁阀、热电偶温度传感器探头、步进电机、PLC控制子系统、制冷机、管道、真空电磁阀、真空泵、试样、水冷试样托架、真空调节阀和环境舱。本发明所提供的全谱段辐射加热装置高热流密度、参数可调、科学简易、操作简单、低成本。通过菲涅尔平面聚光透镜和二次聚光棱镜将太阳光高效汇聚,产生高热流密度载荷,对环境舱内防/隔热材料进行加载,实现其烧蚀、热冲击等使用性能的测试与评价。

    超高温防热材料原子氧氧化地面模拟实验装置

    公开(公告)号:CN102175665B

    公开(公告)日:2013-01-16

    申请号:CN201110036102.5

    申请日:2011-02-11

    Abstract: 超高温防热材料原子氧氧化地面模拟实验装置,涉及超高温防热材料原子氧氧化地面模拟实验装置,解决了目前没有模拟这种高温、低压、原子氧氧化环境的实验装置问题,适用于模拟不同状态超高温防热材料的原子氧氧化环境;它包括石英管、原子氧发生装置、电磁感应加热装置和压力控制装置,原子氧发生装置的输出端连接在石英管的原子氧输入端,石英管的空气输出端连接在压力控制装置的空气输入端,加热装置的输出端分别连接套在石英管中部外壁的感应加热线圈的一个输入端,满足温度在1000~2000℃之间、压力在10~5000Pa之间的高超声速飞行器防热材料的原子氧氧化的实验要求,适用于高温材料原子氧环境下的氧化行为研究。

    导电类热防护材料冷/热循环热冲击试验装置

    公开(公告)号:CN102866076A

    公开(公告)日:2013-01-09

    申请号:CN201210298585.0

    申请日:2012-08-14

    Abstract: 导电类热防护材料冷/热循环热冲击试验装置,包括两个加热电极、供电子系统、循环冷却子系统、淬火介质喷射子系统、淬火介质排出子系统、单/双比色红外测温仪、不锈钢环境舱、淬火介质喷头和PLC控制装置,两个加热电极置于不锈钢环境舱内的滑动轨道上,两个加热电极与供电子系统相连接,两个加热电极分别与循环冷却子系统相连接,淬火介质喷头与淬火介质喷射子系统连接,单/双比色红外测温仪采集导电类热防护材料试样表面温度,PLC控制装置分别与供电子系统、循环冷却子系统、淬火介质冷却子系统、淬火介质排出子系统、单/双比色红外测温仪电信号连接。本具有设备操作简单,调节范围宽,成本低的优点。

    一种三维可调式防/隔热材料地面模拟试验装置

    公开(公告)号:CN102156143B

    公开(公告)日:2012-07-25

    申请号:CN201110061210.8

    申请日:2011-03-15

    Abstract: 本发明提供了一种三维可调式防/隔热材料地面模拟试验装置,由横向旋转轴柄、横向轴、纵向平台旋转轴柄、旋转石墨夹具轴柄、装夹台、石墨夹具、被测试件、纵向平台、喷枪、喷枪支架、限流阀、第一调节阀、第一流量计、第一压力表、第一减压阀、乙炔瓶、氧气瓶、轴向旋转轴、操作台支架、轴向旋转轴柄、轴向进动杆、操作台、平台、第二调节阀、第二流量计、第二压力表和第二减压阀组成,本发明通过控制三维移动平台的工作距离及氧乙炔进气流量,可调节试验状态参数,该方法操作简单,效率高,成本低。

    一种基于LIF检测的材料表面催化系数实验室检测装置及评价方法

    公开(公告)号:CN107589097B

    公开(公告)日:2020-02-18

    申请号:CN201710736314.1

    申请日:2017-08-24

    Abstract: 本发明公开了一种基于LIF检测的材料表面催化系数实验室检测装置及评价方法,所述检测装置包括激光诱导源及激光入射调节光路、中空水冷不锈钢腔体、高功率光纤耦合激光器、能量计、射频电源、荧光成像光路及采集装置、双比色高温计和同步触发装置。本发明在射频电感耦合等离子体中,利用激光诱导荧光光谱诊断方法对材料表面氧原子浓度、温度等信息进行非接触、高精度的同步原位测量,结合原子摩尔分数梯度理论,直接得到材料表面氧原子的催化系数,实现不同环境参数下材料表面催化系数的非接触式精确、原位的表征与评价。

    一种测试导体材料超高温压缩性能的夹具及夹持方法

    公开(公告)号:CN107870123B

    公开(公告)日:2019-08-09

    申请号:CN201711095926.3

    申请日:2017-11-08

    Abstract: 一种测试导体材料超高温压缩性能的夹具及夹持方法,属于超高温装夹技术领域。螺纹轴与试验机连接,轴座通过第一螺母与螺纹轴连接,第一螺母与螺纹轴之间设有第一垫圈,第一垫圈与螺纹轴之间设有第三绝缘垫,轴座与螺纹轴之间的径向空隙内设有第一绝缘垫,轴座与螺纹轴之间的轴向空隙内设有第二绝缘垫,连接法兰与轴座可拆卸连接,第一水冷压杆与压头座螺纹连接,压头体与压头座的球面性凹坑光滑接触,托盘与压头座螺纹连接;上压缩连杆与上压缩压头螺纹连接;垫块与定位罩螺纹连接,第二水冷压杆与垫块螺纹连接,轴连接套与定位盘连接,下压缩连杆与试验机螺纹连接,下压缩连杆与下压缩压头连接。本发明用于测试导体材料超高温压缩性能。

    一种基于动态数据驱动的热防护在线分析系统及方法

    公开(公告)号:CN109142085B

    公开(公告)日:2019-07-26

    申请号:CN201811176893.X

    申请日:2018-10-10

    Abstract: 本发明涉及一种基于动态数据驱动的热防护在线分析系统及方法,其中,所述系统包括:试验测试装置,包括石英灯加热装置或者力学性能测试装置;所述石英灯加热装置具有放置试验件的可升降平台,所述力学性能测试装置具有固定试验件的夹具;数据采集装置,包括布置于试验件上的传感器,用于获取试验件的动态响应数据;计算机分析装置,与所述数据采集装置通信,用于获取试验件的动态响应数据更新在线物理模拟模型,并进行状态预报。本发明将动态数据驱动引入热防护的分析中,实现热防护模拟与试验有机结合,消除传统数值模拟中由于诸多条件假设及模型误差造成的不确定性,增加了模拟计算的准确性与试验的有效性。

    一种测试复合材料高温剪切强度的试样及方法

    公开(公告)号:CN107884286B

    公开(公告)日:2019-05-31

    申请号:CN201711093655.8

    申请日:2017-11-08

    Abstract: 一种测试复合材料高温剪切强度的试样及方法,属于复合材料高温力学性能测试领域。面内剪切试样上靠近上端和下端分别水平设有第一、第二切口,第一、第二切口均贯穿试样厚度方向,第一、第二切口的长度均大于试样宽度的一半,第一、第二切口的根部均为直方形,第一、第二切口关于试样反对称;层间剪切试样上靠近上端和下端分别水平设有切口一和切口二,切口一和二均贯穿试样宽度方向,切口一和二的长度均大于试样厚度的一半,切口一和切口二的根部均为直方形,切口一和切口二关于试样反对称。按照恒定位移加载面内或层间剪切试样,直至试样断裂,利用剪切公式计算面内或层间剪切试样复合材料高温剪切强度。本发明用于测试复合材料高温剪切强度。

    高温真空环境下测试导体材料力学性能的系统及测试方法

    公开(公告)号:CN106769525B

    公开(公告)日:2019-05-31

    申请号:CN201611064553.9

    申请日:2016-11-28

    Abstract: 本发明提供了一种高温真空环境下测试导体材料力学性能的系统及测试方法,解决了高温应变测量困难、试样加热效率低等问题。系统,包括高温变形测试子系统、温控子系统和加载子系统,拉伸过程在真空环境舱中进行,试样通过力学试验机加载,本方法利用焦耳效应,将材料放入真空环境舱中,常温绝对真空度可达0.025Pa,通过对导体材料通入低压大电流,实现对试样的快速加热,在达到目标温度后,进行加载,同时采用DIC应变测试技术,对高温变形场进行数据采集,得到整个试样标距段的应变场和试样的位移‑载荷曲线,通过后续的数据处理,得到试样的高温拉伸/压缩模量和拉伸强度。本发明具有升温速率快,温度场均匀,变形测量精度高等优点。

    适用于高温环境的光纤光栅传感器封装结构及封装方法

    公开(公告)号:CN108426591B

    公开(公告)日:2019-04-16

    申请号:CN201810089618.8

    申请日:2018-01-30

    Abstract: 本发明涉及一种适用于高温环境的光纤光栅传感器封装结构,包括上层封装和下层封装,下层封装设有光纤放置部和两个间隔设置的光纤固定通孔,光纤放置部经过两个光纤固定通孔,被分割为第一放置部、第二放置部和第三放置部,第一放置部位于两个光纤固定通孔之间,第一放置部的槽深大于第二放置部和第三放置部的槽深;上层封装包括两个注胶部,两个注胶部分别与两个光纤固定通孔对应,注胶部顶部设有注胶孔。本发明还提供了一种适用于高温环境的光纤光栅传感器封装方法。本发明的封装结构安装时,光纤光栅传感器直接与待测件粘接,避免了由于应变传递的问题造成测量误差;采用两点式粘接方式,避免了粘合剂对光纤光栅传感器自身的性能产生影响。

Patent Agency Ranking