-
公开(公告)号:CN119028436A
公开(公告)日:2024-11-26
申请号:CN202410945326.5
申请日:2024-07-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B25/00 , G16B5/00 , G16B40/00 , G16B30/10 , G06F18/213 , G06N3/042 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于异构网络的多物种蛋白质功能预测方法及系统,所述方法包括:使用ESM‑2模型对蛋白质序列进行特征提取,得到序列特征;构建蛋白质的结构接触图,基于图卷积和层次图池化的结构模型对结构接触图训练,提取结构特征;将序列特征和结构特征进行拼接,根据PPI网络和同源相似性网络构建跨物种的异构网络;在训练阶段,使用结构特征和序列特征在异构网络上传播,并在传播时使用图注意力机制更新节点向量;在预测阶段,加入训练集的GO标签进行网络传播,将蛋白质表示和GO标签的传播结果进行线性组合,得到最终的GO标签预测概率。本发明提高了多物种蛋白质功能预测的预测效果,实现了功能标签的跨物种传播。
-
公开(公告)号:CN118981372A
公开(公告)日:2024-11-19
申请号:CN202410987081.2
申请日:2024-07-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于并行自适应拍卖算法的非统一内存访问资源分配方法,方法包括下述步骤:当操作系统启动时,获取非统一内存访问架构中的节点信息及任务信息;将非统一内存访问架构的资源问题视为带位置约束的背包问题,采用并行自适应拍卖算法进行优化求解,得到分配结果。本申请将经济学理论和计算机科学进行结合,在拍卖机制下使任务对资源进行自主竞标,同时将问题有效分解为独立的并行计算子问题,使得各任务的出价策略相互独立,实现内存资源的更有效且高效分配;在对资源进行自主竞标时,本发明将DQN模型与拍卖机制下的广告主策略求解相结合,提高了DQN模型的稳定性,实现了任务基于本地信息的自主决策,从而实现分散、高效的资源分配。
-
公开(公告)号:CN117435580B
公开(公告)日:2024-03-22
申请号:CN202311768469.5
申请日:2023-12-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种数据库参数筛选方法及相关设备,所述方法包括:获取训练数据库配置参数,并进行预处理,得到数据库参数训练集;获取预设规则集,根据预设规则集构建参数性能决策树,并转化为树状神经网络预测模型;根据数据库参数训练集对树状神经网络预测模型进行训练,得到参数性能预测模型;获取当前数据库配置参数,并输入至参数性能预测模型,得到当前数据库配置参数对应的参数性能;计算当前数据库配置参数对参数性能的贡献度,并根据贡献度对当前数据库配置参数进行参数筛选。本发明通过构建参数性能预测模型来计算数据库中配置参数的贡献度,并根据贡献度对数据库中的配置参数进行筛选,大大的提升了数据库的查询效率。
-
公开(公告)号:CN117393143A
公开(公告)日:2024-01-12
申请号:CN202311316888.5
申请日:2023-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于图表示学习的环状RNA‑疾病关联预测方法、移动设备及存储介质,该方法包括:基于环状RNA及相关信息构建环状RNA的异构网络,所述异构网络包括环状RNA节点和疾病节点;将异构网络中各个节点的特征随机初始化后输入图表示学习模型,通过所述图表示学习模型按预设流程学习各个节点的表示向量;基于环状RNA节点的表示向量和疾病节点的表示向量的内积确定为对应环状RNA与疾病的关联预测得分。如此,通过图表示学习模型学习异构网络中各个节点的表示向量,再基于环状RNA节点和疾病节点的表示向量的内积确定关联预测得分,提高了异构网络构建的灵活性,使得图表示学习模型能获得更丰富的节点表示,提高了环状RNA‑疾病预测的准确性。
-
公开(公告)号:CN117290887A
公开(公告)日:2023-12-26
申请号:CN202311522961.4
申请日:2023-11-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于账户区块链的可问责隐私保护智能合约实现方法,方法包括:用户部署智能合约并公开合约地址,监管者运行密钥获得监管者公钥和监管者私钥,并将监管者公钥上传至区块链;注册新用户并生成用户私钥,然后将用户公钥上传区块链,智能合约记录注册用户信息;用户创建空白数据记录,然后将生成的数据记录承诺上传区块链;用户收集区块链上的所有数据记录承诺并构建默克尔书,然后进行链下计算;用户将隐私保护交易单发送至区块链,区块链经过广播后进行验证计算;监管者捕获到隐私保护交易单,随后利用监管者私钥问责用户。本发明能够支持细粒度的隐私保护控制策略和灵活适应多种应用场景,同时实现可问责隐私保护智能合约。
-
公开(公告)号:CN116884473A
公开(公告)日:2023-10-13
申请号:CN202310581243.8
申请日:2023-05-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B15/20 , G16B40/00 , G06F18/214 , G06F18/241
Abstract: 本发明公开了一种蛋白质功能预测模型生成方法及装置,包括获取训练蛋白质的氨基酸三维原子坐标,并根据其进行图论方法生成蛋白质二维接触图;对训练蛋白质的氨基酸三维原子坐标进行算法处理获取第一特征矩阵,对蛋白质二维接触图进行算法处理获取第二特征矩阵,第一特征矩阵与训练蛋白质的氨基酸三维原子坐标中序列作用位点对应,第二特征矩阵与训练蛋白质的氨基酸三维原子坐标中结构作用折叠结构对应;根据第一特征矩阵和第二特征矩阵分别对应的数据标签训练预先构建的蛋白质功能分类器,得到蛋白质功能预测模型。通过将训练蛋白质的氨基酸结构和序列作为信息源提取特征,提高了预测模型对蛋白质功能的预测精度。
-
公开(公告)号:CN115601960B
公开(公告)日:2023-06-23
申请号:CN202211122126.7
申请日:2022-09-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于图对比学习的多模态交通流量预测方法及系统,方法包括:基于历史交通流量数据建立局部和全局流量异构图;对全局和局部流量异构图进行编码得到对应的异构图流量特征;计算局部流量异构图流量特征的互信息来优化局部流量异构图流量特征;多个局部流量异构图流量特征经过注意力机制融合成的全局流量特征,与全局流量异构图流量特征进行图对比学习来优化全局流量异构图流量特征;将优化后的局部和全局流量异构图流量特征输入到空间图卷积神经网络分别预测多模态的交通流量。本发明可以有效地捕获不同出行模式之间的相关性和差异性,有助于更好地捕获多种出行模式之间的依赖关系,从而提升交通流量预测的精度。
-
公开(公告)号:CN116246699A
公开(公告)日:2023-06-09
申请号:CN202211105940.8
申请日:2022-09-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B20/00 , G16B40/00 , G06F16/36 , G06N3/0464
Abstract: 本发明公开了一种基于知识图谱的合成致死预测方法、设备及存储介质,该方法包括:基于知识图谱卷积网络获得第一基因特征;根据合成致死相互作用网络获得第二基因特征;计算所述第一基因特征和所述第二基因特征的向量内积,预测基因对的合成致死概率。由此解决了当前需要人工设计基因特征,以及无法通过建模合成致死相互作用背后机制的问题,在提升基因对的合成致死预测性能的同时,还提高了模型的可解释性。
-
公开(公告)号:CN114723071B
公开(公告)日:2023-04-07
申请号:CN202210450751.8
申请日:2022-04-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N20/00 , G06F18/241
Abstract: 本发明公开了一种基于客户端分类和信息熵的联邦学习方法及装置,涉及机器学习技术领域,该方法包括:基于客户端在非独立同分布数据场景的偏置程度,将客户端归入第一服务器或第二服务器;在相对应的服务器中训练客户端,得到训练好的客户端模型,并确定客户端模型的本地模型参数,并基于本地模型参数对应的更新第一服务器的第一模型参数和第二服务器的第二模型参数;确定第一服务器和第二服务器满足交互条件,基于第一模型参数和第二模型参数分别对应的权重,更新中央服务器的中央模型参数。本发明可以提升联邦学习的模型准确率,使得联邦学习适用于在不同混合程度的Non‑IID场景。
-
公开(公告)号:CN115828269A
公开(公告)日:2023-03-21
申请号:CN202310115880.6
申请日:2023-02-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F21/57 , G06F21/56 , G06N3/08 , G06N3/0442 , G06N3/045
Abstract: 本公开提供了一种源代码漏洞检测模型的构建方法、装置、设备及存储介质,通过构建代码结构图,所述代码结构图包括节点、边信息、节点类型以及边类型;基于所述代码结构图构建元路径图,其中,所述元路径图中的元路径用于代表由边信息连接的源节点到目标节点的异构关系;基于元路径注意力机制学习所述元路径图中各个元路径的异构关系,以及基于分层注意力机制学习超过预设距离的节点之间的依赖关系,从而使得图神经网络能够学习代码的语法结构信息,提升代码漏洞检测的性能。
-
-
-
-
-
-
-
-
-