-
公开(公告)号:CN116521094B
公开(公告)日:2023-11-14
申请号:CN202310804460.9
申请日:2023-07-03
Applicant: 之江实验室
IPC: G06F3/06
Abstract: 本申请涉及一种元数据存储方法、装置、计算机设备和存储介质。所述方法包括:根据应用需求设置元数据的存储基准时间;以存储基准时间为起点,根据待存储的元数据的数据类型以及待存储的元数据的存储周期,设置存储空间中的存储时间片;根据接收到的待存储的元数据的时间戳,将待存储的元数据存储至对应的存储时间片中。采用本方法能够解决现有的存储方式存在数据删除不彻底而导致的存储空间的利用率低以及存储空间回收率低的问题。
-
公开(公告)号:CN116881618A
公开(公告)日:2023-10-13
申请号:CN202311078065.3
申请日:2023-08-25
Applicant: 之江实验室
Abstract: 本申请涉及一种通用矩阵乘计算优化方法、装置及处理器,该方法应用于处理器,处理器包括至少一个计算核心,计算核心包括算术逻辑单元、数据缓存和寄存器,包括:基于算术逻辑单元的宽度、寄存器的数量、数据缓存的容量,以及预先确定的用于构成通用矩阵乘算子内核的计算核心数量,确定通用矩阵乘算子内核的尺寸;基于算子内核的尺寸、预先确定的基本块矩阵的尺寸,以及左矩阵、右矩阵的尺寸,优化并行计算的计算核心数量;基于并行计算的计算核心数量、基本块矩阵的尺寸,以及左矩阵、右矩阵的尺寸,对数据缓存中通用矩阵乘计算区域的分块计算进行优化,解决了通用矩阵乘计算硬件资源利用率较低,数据访存开销较大的问题。
-
公开(公告)号:CN116610964B
公开(公告)日:2023-09-26
申请号:CN202310893532.1
申请日:2023-07-20
Applicant: 之江实验室
IPC: G06F18/22 , G06F16/332
Abstract: 本申请涉及一种文本相似度匹配方法、装置和计算机设备。所述方法包括:利用大模型服务接口获取到的信息,构建基础问答数据集;对基础问答数据集进行相关性扩展,生成与基础问答数据集相关的扩展内容;利用预设的综合评价指标,对扩展内容进行评估,将评估结果满足预设条件的扩展内容并入基础问答数据集,生成完备问答数据集;根据完备问答数据集的数据结构,选取具备对应网络架构的问答模型,并采用梯度下降法对问答模型的参数进行更新,直至问答模型收敛,生成用于文本相似度匹配的完备问答模型;基于完备问答模型,进行文本相似度匹配。采用本方法能够解决现有的基于文本相似度匹配的智能问答技术存在回答问题的效率和准确率低的问题。
-
公开(公告)号:CN116757216A
公开(公告)日:2023-09-15
申请号:CN202311024641.6
申请日:2023-08-15
Applicant: 之江实验室
IPC: G06F40/295 , G06F16/35
Abstract: 本申请涉及一种基于聚类描述的小样本实体识别方法、装置和计算机设备,通过获取待识别文本数据;将所述待识别文本数据输入实体边界定位模型,得到所述待识别文本数据中所有实体的实体边界;将所述待识别文本数据以及所述实体边界输入实体聚类模型,得到多个类别的实体;基于多个类别的所述实体,确定每个类别的类别标识以及对应实体。上述基于聚类描述的小样本实体识别方法,基于实体边界定位模型和实体聚类模型,能够精准识别实体边界,并对实体进行精准分类,明显提高了实体识别和分类效率,并且由于人工介入的减少,也会一定程度提高实体标记的准确性。
-
公开(公告)号:CN116755893A
公开(公告)日:2023-09-15
申请号:CN202311056655.6
申请日:2023-08-22
Applicant: 之江实验室
IPC: G06F9/50 , G06F16/2457 , G06F16/2455 , G06N3/08
Abstract: 面向深度学习的分布式计算系统的作业调度方法和装置,包括:获取用户输入的作业信息,并存储在数据库中,作业信息包括作业优先级等,并根据作业信息维护一个作业优先级队列;获取集群中各节点的缓存信息;响应于接收到发起作业执行的请求,作业执行根据所述的优先级队列先后顺序执行,将所述作业调度到相应主机节点上执行,执行的结果存储到数据库中;响应于接收到模型更新作业的请求,在所述数据库中查询所述作业所需的数据,计算作业剩余结束时间,并将计算结果保存到数据库中;响应与接收到更新所述队列请求,在所述数据库中查询所需的数据,并根据所述数据更新所述队列。本发明较少依赖用户输入信息,有效提高作业执行时间预测精度。
-
公开(公告)号:CN116755862A
公开(公告)日:2023-09-15
申请号:CN202311010092.7
申请日:2023-08-11
Applicant: 之江实验室
IPC: G06F9/48 , G06T1/20 , G06V10/764 , G06V10/774
Abstract: 本说明书公开了一种算子优化调度模型的训练方法、装置、介质及设备,包括:确定当前时刻作为训练样本的预先基于图像数据训练的图像分类模型中的各算子的信息,并输入待训练的算子优化调度模型,确定当前时刻待优化算子。确定对待优化算子进行优化后的待优化算子对图像数据进行图像分类时的运行下降时间。再根据信息、待优化算子以及待优化算子对图像数据进行图像分类时的运行下降时间,对待训练的算子优化调度模型进行训练,使得可以通过训练完成的算子优化调度模型确定当前时刻所需调度进行优化的算子,减少人工设计选择所需优化的算子的策略的麻烦,加快后续将待部署的图像分类模型部署到硬件上的速度。
-
公开(公告)号:CN116721399A
公开(公告)日:2023-09-08
申请号:CN202310925867.7
申请日:2023-07-26
Applicant: 之江实验室
IPC: G06V20/56 , G06V20/58 , G06V20/70 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0495 , G06N3/045 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本说明书公开了一种量化感知训练的点云目标检测方法及装置,可以获取训练样本,将训练样本中的点云样本数据输入到全精度网络中,得到目标检测结果,以对全精度网络进行训练,得到训练后的全精度网络,而后,将训练后的全精度网络进行模型量化,得到量化后网络,量化后网络的参数精度低于全精度网络的参数精度,而后,将训练样本输入到量化后网络中,得到量化后网络得到的目标检测结果,根据标注信息和目标检测结果,对量化后网络进行参数微调训练,得到训练后的量化后网络,最后,将训练后的量化后网络部署在无人驾驶设备中,以使无人驾驶设备通过量化后网络进行点云目标检测,从而在保证准确性的情况下提高了无人驾驶设备的点云检测效率。
-
公开(公告)号:CN116562218A
公开(公告)日:2023-08-08
申请号:CN202310493297.9
申请日:2023-05-05
Applicant: 之江实验室
IPC: G06F30/392 , G06F17/16 , G06N3/0464 , G06N3/092
Abstract: 一种基于强化学习实现矩形宏单元的布图规划方法,包含:根据公开数据集ispd2005整理宏单元和标准单元信息;用GCN对宏单元编码;将宏单元按照面积从大到小排序,将排好顺序的宏单元信息和宏单元编码作为双线性模型的输入,提取环境特征;根据宏单元大小计算掩模矩阵确定当前宏单元可摆放的范围;将环境特征作为强化学习策略网络的输入,策略网络输出宏单元摆放位置的概率;根据策略网络的输出和掩模矩阵确定宏单元的位置;奖励函数设为总线长、拥塞程度和布局密度的加权和。还包括一种基于强化学习实现矩形宏单元的布图规划系统。本发明在满足宏单元互相不相交的约束条件下,为用强化学习求解不同大小的矩形宏单元的布图规划问题提供了一种解决方案。
-
公开(公告)号:CN116502679A
公开(公告)日:2023-07-28
申请号:CN202310543696.1
申请日:2023-05-15
Applicant: 之江实验室
IPC: G06N3/0464 , G06N3/063 , G06N3/08
Abstract: 本说明书公开了一种模型构建方法、装置、存储介质及电子设备,可以对需要进行测试的各候选模型架构进行筛选,以筛选出通过代理模型预测出的性能参数的准确率较低的部分候选模型架构,来通过部署测试模型的方式获得该候选模型架构的真实性能参数,而针对剩余的候选模型架构,可以直接通过代理模型来获取出性能参数,并且可以通过主动学习的方法,在线对代理模型进行训练,从而可以在保证候选模型架构的性能评估准确率的同时,提升自动化构建深度学习模型的效率。
-
公开(公告)号:CN116483547A
公开(公告)日:2023-07-25
申请号:CN202310742056.3
申请日:2023-06-21
Applicant: 之江实验室
Abstract: 本申请涉及一种资源调度方法、装置、计算机设备和存储介质。所述方法包括:获取待调度的容器组;基于待调度的容器组,确定集群中与容器组匹配的目标节点;在待调度的容器组的优先级标志位为低延迟的情况下,将目标节点中的处理器资源分配至容器组中的容器,生成资源调度结果。采用本方法能够解决不同容器间资源抢占的问题。
-
-
-
-
-
-
-
-
-