-
公开(公告)号:CN119063869A
公开(公告)日:2024-12-03
申请号:CN202411572269.7
申请日:2024-11-06
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种金属基复合材料结构内部温度场的超声测量方法,属于超声无损探测领域,包括步骤:在金属基复合材料结构表面激发超声波,检测其回波信号的特征;如果回波信号具有第一回波和第二回波的特征,则首先采用等效均匀化的处理方法将非均质材料均质化,再利用超声测量渡越声时测量所述金属基复合材料的内部温度场;如果回波信号不具有第一回波和第二回波的特征,则结束。本发明克服了传统复合材料因材料组分结构多样带来的复杂问题,测量结果精度较好,适用于多种金属基复合材料的超声测温。
-
公开(公告)号:CN118980441A
公开(公告)日:2024-11-19
申请号:CN202411467329.9
申请日:2024-10-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/24
Abstract: 本发明公开了一种固体三维空间稳态温度场激光超声探测系统及方法,涉及物体内部温度无损非接触测量领域;其中,系统包括:激光超声激发器、激光超声接收器、扫查装置、信号处理模块和数据处理模块;所述激光超声激发器用于在固体中激发超声波;所述激光超声接收器用于接收从固体底部返回的超声回波信号;所述信号处理模块用于采集超声波传播时间;所述激光超声激发器和激光超声接收器安装在扫查装置上;所述数据处理模块用于根据各个位置的超声波传播时间,计算得到三维空间温度场分布;并以此提出了一种超声探测方法。本发明,可实现对固体三维空间稳态温度场的无损、非接触、远距离测量,能够适应高温、高压、腐蚀等复杂环境。
-
公开(公告)号:CN117910273A
公开(公告)日:2024-04-19
申请号:CN202410225980.9
申请日:2024-02-29
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G16C60/00 , G06F17/11 , G06F17/16 , G06F113/26 , G06F119/08
Abstract: 本发明公开了一种陶瓷基复合材料热传导特性预测方法、介质、设备及系统,属于陶瓷基复合材料热传导特性预测领域,包括步骤:基于节点建立控制体的格点型有限体积法CV‑FVM进行空间离散,离散过程采用三角形单元;在空间离散的过程中,通过相邻单元构建边中点位置处的温度平滑梯度,并利用形函数将节点位置处的温度梯度表达成与边中点位置平滑梯度有关的线性表达式,用以保证相邻单元在公用节点位置和边中点位置处梯度的连续性;将获得的线性表达式带入热传导方程计算得到节点温度,从而预测陶瓷基复合材料热传导特性。本发明提高了对陶瓷基复合材料内的温度以及热流的计算精度,降低了结构设计过程中的计算成本,缩短了结构设计周期。
-
公开(公告)号:CN116186905B
公开(公告)日:2023-06-27
申请号:CN202310443470.4
申请日:2023-04-24
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/17 , G06F30/20 , G06F119/08 , G06F111/04
Abstract: 本发明公开了一种基于能流定向输运的高热载荷疏导设计方法及热防护系统,属于空天飞行器气动热防护领域,包括步骤:根据传热学基础理论,将防热结构定向热输运问题设定为沿高热导率材料路经的能流问题;再基于所设定的沿高热导率材料路经的能流问题,建立从热防护系统外表面到内表面的基本能流路经,并通过多叉树方法对外表面能量进行收集并对内表面能量进行疏散,实现热防护系统表面局部高温热载荷的定向疏导。本发明极大地拓展了热防护系统设计空间,可获得综合防热性能更优的热防护系统。
-
公开(公告)号:CN115995279B
公开(公告)日:2023-06-02
申请号:CN202310282390.5
申请日:2023-03-22
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G16C60/00 , G06F30/20 , G06F113/26 , G06F119/14
Abstract: 本申请公开了计算机技术领域内的一种材料力学特性评估方法、装置、设备及可读存储介质。本申请基于同一复合材料的不同尺度的网格结构进行材料力学特性的求解,在整个求解过程中不同尺度网格的相互映射一次性确定且可并行式求解位移基函数,最终可快速得到宏观位移分布,并据此位移分布评估复合材料的力学特性。不同尺度的网格结构可自动求解材料交界面处的数值不连续问题,不需要额外针对交界面处进行计算;并且,该方案还具有尺度不分离特性,由此可更能直接体现细观尺度材料空间分布方式对宏观、细观位移分布的影响。相应地,本申请提供的一种材料力学特性评估装置、设备及可读存储介质,也同样具有上述技术效果。
-
公开(公告)号:CN116186905A
公开(公告)日:2023-05-30
申请号:CN202310443470.4
申请日:2023-04-24
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/17 , G06F30/20 , G06F119/08 , G06F111/04
Abstract: 本发明公开了一种基于能流定向输运的高热载荷疏导设计方法及热防护系统,属于空天飞行器气动热防护领域,包括步骤:根据传热学基础理论,将防热结构定向热输运问题设定为沿高热导率材料路经的能流问题;再基于所设定的沿高热导率材料路经的能流问题,建立从热防护系统外表面到内表面的基本能流路经,并通过多叉树方法对外表面能量进行收集并对内表面能量进行疏散,实现热防护系统表面局部高温热载荷的定向疏导。本发明极大地拓展了热防护系统设计空间,可获得综合防热性能更优的热防护系统。
-
公开(公告)号:CN116052820A
公开(公告)日:2023-05-02
申请号:CN202310282429.3
申请日:2023-03-22
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G16C60/00 , G06F30/23 , G06F113/26 , G06F119/08
Abstract: 本申请公开了计算机技术领域内的一种材料热性能评估方法、装置、设备及可读存储介质。本申请基于同一复合材料的不同尺度的网格结构进行材料热性能的求解,在整个求解过程中不同尺度网格的相互映射一次性确定且可并行式求解温度基函数,最终可快速得到宏观温度分布,并据此温度分布评估复合材料的热性能。不同尺度的网格结构可自动满足材料交界面处的热流守恒,不需要额外针对交界面处进行计算;并且,该方案还具有尺度不分离特性,由此可更能直接体现细观尺度材料空间分布方式对宏观、细观温度分布的影响。相应地,本申请提供的一种材料热性能评估装置、设备及可读存储介质,也同样具有上述技术效果。
-
公开(公告)号:CN116013443A
公开(公告)日:2023-04-25
申请号:CN202310282038.1
申请日:2023-03-22
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G16C60/00 , G06F30/23 , G06F113/26 , G06F119/08
Abstract: 本申请公开了一种传热特性预测方法、装置、设备及可读存储介质,属于泡沫隔热材料跨尺度传热领域,该方法将材料物性和细观温度的依赖关系建立在细观网格尺度上,在粗网格进行求解过程,相比现有技术为了精确表征其微细结构,采用分辨率非常高的网格,并且直接基于细网格进行计算的方式,本申请基于粗网格进行计算的方式,大大降低了求解时间,实现快速准确的预测真实结构多尺度泡沫材料的传热特性,大幅度降低飞行器防热结构防热/隔热设计周期,提高防热结构的有效承热量,降低结构设计冗余。
-
公开(公告)号:CN116013442A
公开(公告)日:2023-04-25
申请号:CN202310281749.7
申请日:2023-03-22
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G16C60/00 , G06F30/20 , G06F119/08
Abstract: 本申请公开了防热材料设计技术领域内的一种防热材料设计方法、装置、设备及可读存储介质。本申请能够选择多种类型的单胞构建防热材料,还在材料设计过程中控制了材料热性能以及其重量,并且还兼顾了承重要求和加工要求,能够在设计过程中控制材料热传递路径、材料重量、加工难度和复杂度,降低了防热材料结构的冗余。相应地,本申请提供的一种防热材料设计装置、设备及可读存储介质,也同样具有上述技术效果。
-
公开(公告)号:CN115950916A
公开(公告)日:2023-04-11
申请号:CN202310241424.6
申请日:2023-03-14
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明具体涉及热测试技术,具体公开了一种物体表面热流密度检测方法、装置以及设备,该方法包括设定物体待测面上热流随时间变化的初步热流密度函数;采集物体待测面的初始温度和超声波传播时长;根据初始温度和初步热流密度函数,确定理论超声波传播时长;若是超声波传播时长和理论超声波传播时长之间的差异较小,则该初步热流密度函数即为物体待测面的热流密度函数;否则对初步热流密度函数进行调整,并重新按照上述方式确定该初步热流密度函数是否准确,直到获得准确的热流密度函数。本申请无需对物体结构进行破坏及其他任何处理,且超声波信号仅仅在物体内部传播,避免外部环境的干扰,降低热流密度的测量难度且保证热流密度函数的准确性。
-
-
-
-
-
-
-
-
-