-
公开(公告)号:CN116631019A
公开(公告)日:2023-08-22
申请号:CN202210302699.1
申请日:2022-03-24
Applicant: 清华大学 , 首都医科大学附属北京佑安医院
Abstract: 本发明提供一种基于面部图像的口罩适合性检测方法及装置,其中方法包括:获取受试者的正面面部图像;将所述正面面部图像输入至适合性检测模型,获得所述适合性检测模型输出的一个或多个适合性因数,每个所述适合性因数与预设口罩型号一一对应;其中,所述适合性检测模型是基于图像样本以及所述图像样本对应的一个或多个适合性因数标签进行训练后得到的,每个所述适合性因数标签是根据所述图像样本预先确定的,并与预设口罩型号一一对应。本发明实施例提供的基于面部图像的口罩适合性检测方法,提高了口罩适合性检测的便捷性,降低了口罩适合性检测的成本。
-
公开(公告)号:CN114083535A
公开(公告)日:2022-02-25
申请号:CN202111371166.0
申请日:2021-11-18
Applicant: 清华大学
IPC: B25J9/16
Abstract: 本发明提供一种机器手抓取姿势质量的物理度量方法及装置。其中,该方法包括:确定机器手的候选抓取姿势与物体之间接触点的平坦度分数;确定所述候选抓取姿势夹持所述物体的重心分数;基于所述平坦度分数和所述重心分数评估候选抓取姿势的质量。本发明提供的机器手抓取姿势质量的物理度量方法,基于人类在生活中拿起物体时倾向于接触物体上更平坦的部位以及习惯于接触物体的中心部位的特性,通过两种物理度量分数分别从物体自身平坦度和重力分析上评价机器手抓取姿势的质量,使得候选抓取姿势的评价结果具有更强的鲁棒性,在对实际物体预测抓取姿势时,能够选择出更加优质的候选抓取姿势,从而提升了后续机器手抓取姿势控制的精确度和稳定性。
-
公开(公告)号:CN112446385A
公开(公告)日:2021-03-05
申请号:CN202110125033.9
申请日:2021-01-29
Applicant: 清华大学
Abstract: 本发明公开了一种场景语义分割方法、装置、电子设备,该方法包括:如果场景原始点云对应体素块的粒度大于粒度阈值,则根据所述体素块特征和原始点云特征,得到下一分割点云;如果所述有效体素块细分后下一体素块粒度小于等于所述粒度阈值,则根据所述下一分割点云添加语义标签作为场景语义分割结果;如果所述有效体素块细分后下一体素块粒度大于所述粒度阈值,则根据所述下一体素块特征和下一分割点云特征,得到新下一分割点云;直至所述有效体素块细分后的新下一体素块的粒度小于等于所述粒度阈值,则将所述新下一分割点云添加语义标签作为场景语义分割结果。本发明实施例在场景不同粒度下有足够上下文信息进行整合,减少计算复杂度。
-
公开(公告)号:CN112446379A
公开(公告)日:2021-03-05
申请号:CN202110134370.4
申请日:2021-02-01
Applicant: 清华大学
Abstract: 本发明实施例公开了一种动态大场景自适应智能处理方法。该方法包括:获取动态大场景下的原始图像,并将原始图像按预设比例缩小,获得待处理图像;将待处理图像输入预设的目标区域寻找网络模型,根据目标区域寻找网络模型的生成结果确定至少一个目标区域;将各目标区域输入目标识别检测器中进行位置检测,确定各目标区域中的目标位置框;按照各目标区域的尺度信息和预设比例,将相应的目标位置框关联至原始图像中。本发明实施例的技术方案,解决了难以对动态大场景下的高分辨率图像进行目标识别,识别速度慢且识别结果不够准确的问题,提升了对高分辨率图像视觉处理的处理效率,并提高了对高分辨率图像视觉处理的准确度。
-
公开(公告)号:CN106529442B
公开(公告)日:2019-10-18
申请号:CN201610949687.2
申请日:2016-10-26
Applicant: 清华大学
Abstract: 本发明提供一种行人识别方法和装置,其中该方法包括:根据图像中的行人位置,标定行人区域,分离单独的行人图像;根据行人区域和单独的行人图像,标定行人数据集,将行人图像对应于行人体型;根据行人图像,基于卷积神经网络分析获取行人的属性特征。本发明通过行人图像的体型判断,利用基于深度学习的多任务卷积神经网络,在离线训练过程中针对不同性别、不同的行人视角训练一个统一的体型判断模型,有效的解决行人视角的问题,提高了算法准确度。
-
公开(公告)号:CN106951826B
公开(公告)日:2019-09-20
申请号:CN201710079126.6
申请日:2017-02-14
Applicant: 清华大学
IPC: G06K9/00
Abstract: 本发明提供一种人脸检测方法及装置,属于图像识别技术领域。该方法包括:获取原始图像中人脸校正候选区域的位置响应特征图;对位置响应特征图进行划分,得到相应数量的方格,并按照每一方格所处的位置,区分所有方格的方格类型;按照每种方格类型对应的人脸检测贡献程度,确定每种方格类型对应的权重;基于每一方格对应的特征向量及权重,计算人脸校正候选区域对应的区域特征向量;基于区域特征向量,输出原始图像中最终包含人脸的区域。由于为位置响应特征图中不同方格类型引入了不同人脸部位的权重,从而能够减少复杂场景下外在条件对对检测结果的影响。因此,人脸检测的准确率较高,且提高了人脸检测的适用性。
-
公开(公告)号:CN105243378B
公开(公告)日:2019-03-01
申请号:CN201510781590.0
申请日:2015-11-13
Applicant: 清华大学 , 大唐电信科技股份有限公司
IPC: G06K9/00
Abstract: 本发明提供基于眼部信息的活体人脸检测方法及装置,方法包括:获取待检测人脸图像序列,对其进行光流场估计并获取其中眼睛区域;确定序列中各帧眼睛区域各像素光流,判断各帧眼睛区域各像素光流是否一致,若否则确定检测第一结果为活体,若是则确定检测第一结果为假体;计算序列中各帧眼睛区域二值化图像间的汉明距离,根据其确定活体分数,若活体分数大于等于预设阈值则确定检测第二结果为活体,若活体分数小于预设阈值则确定检测第二结果为假体;判断序列中是否存在眨眼动作,若是则确定检测第三结果为活体,若否则确定检测第三结果为假体;将三种结果融合获取最终检测结果。该方法能检测人脸是否为活体,复杂度低、不需人主动配合、鲁棒性强。
-
公开(公告)号:CN105488486B
公开(公告)日:2018-10-30
申请号:CN201510891742.2
申请日:2015-12-07
Applicant: 清华大学 , 大唐电信科技股份有限公司
IPC: G06K9/00
Abstract: 本发明涉及一种防止照片攻击的人脸识别方法及装置,该方法包括提取待测目标的第一人脸图像对应的待测图像特征,并将所述待测图像特征与预设样本图像的图像特征进行相似性分析,以确定人脸识别的第一识别结果;获取所述待测目标的第二人脸图像;提取所述第二人脸图像对应的待测图像特征,并将该第二待测图像特征与所述预设样本图像的图像特征进行相似性分析,以确定人脸识别的第二识别结果;根据所述第一表示系数矩阵与所述第二表示系数矩阵判断所述待测目标是真人或照片。本发明可以实现防止照片攻击的人脸识别,增强人脸识别系统对照片恶意攻击的防御性,扩大人脸识别系统的适用范围,提高人脸识别的质量。
-
公开(公告)号:CN106897657A
公开(公告)日:2017-06-27
申请号:CN201510960637.X
申请日:2015-12-18
Applicant: 大唐电信科技股份有限公司 , 清华大学
IPC: G06K9/00
Abstract: 本发明实施例提供了一种人脸活体检测方法和装置,其中的方法包括:随机生成预设比特长度的检测序列,其中,所述预设比特长度值与预设检测次数值相同;根据生成的检测序列执行预设次数次被检测用户特征采集,所述被检测用户特征为所述被检测用户面部区域特征;根据采集到的被检测用户特征的检测结果生成检测结果序列,其中,一个检测结果对应检测结果序列中的一位数值;确定检测序列与检测结果序列的模糊匹配度;当检测序列与检测结果序列的模糊匹配度大于第一预设阈值时,确定所述被检测用户为活体。本发明实施例能够提高人脸活体检测系统的安全性和可靠性。
-
公开(公告)号:CN106886783A
公开(公告)日:2017-06-23
申请号:CN201710048176.8
申请日:2017-01-20
Applicant: 清华大学
CPC classification number: G06K9/4604 , G06K9/6202
Abstract: 本发明提供一种基于区域特征的图像检索方法及系统,所述的方法包括:S1,将输入的待检索图像划分为多个子区域图像;S2,提取每一个所述子区域图像的区域特征,并将每一个区域特征量化为对应的视觉单词;S3,遍历每一个区域特征对应的视觉单词,在数据库倒排表中检索每一个模板图像包含所述视觉单词的个数,将包含视觉单词个数最多的模板图像作为检索结果图像。本发明通过对图像进行分区,提取每一个区域图像的区域特征,通过区域特征的匹配得到检索结果,相比现有的通过局部特征来检索,提取的区域特征个数相比局部特征个数大大减少,提高了图像检索的效率,普适性和扩展性更好。
-
-
-
-
-
-
-
-
-