一种基于RQL算法的选择拆卸规划方法及系统

    公开(公告)号:CN117151425B

    公开(公告)日:2024-04-26

    申请号:CN202311364387.4

    申请日:2023-10-20

    Applicant: 暨南大学

    Abstract: 本发明提供一种基于RQL算法的选择拆卸规划方法及系统,获取待拆卸产品的数据集,结合Q‑learning算法和Rollout策略迭代采样待拆卸产品的数据集,得到待拆卸产品的优选拆卸序列,本申请的RQL(Rollout‑Q‑learning)算法是基于Rollout策略优化了Q‑learning算法在迭代过程中的动作选择,在每个决策阶段使用Rollout策略对每个可行动作进行有限步数的模拟采样之后,选择在有限步数内估计价值最大的可行动作,从而使Q‑learning算法具备更强的全局搜索能力,最终得到优选拆卸序列,相对于传统的Q‑learning算法,RQL(Rollout‑Q‑learning)算法在拆卸序列规划上有很大的性能提升,同时能够提高拆卸流程的回收效益,尽可能减少EoL产品对环境造成的危害。

    基于车路协同及强化学习的环卫机器人车调度方法及系统

    公开(公告)号:CN116611635B

    公开(公告)日:2024-01-30

    申请号:CN202310443604.2

    申请日:2023-04-23

    Applicant: 暨南大学

    Abstract: 本发明提出了一种基于车路协同及强化学习的环卫机器人车调度方法及系统,包括:对环卫机器人车通信进行部署,通过基于车载自组织网络的通信网络实现车辆间的数据传输和通信;通过路况感知装置获取路况数据和利用传感器对环卫机器人车周围的环境进行实时感知和数据采集;采用改进的分层双重DQN算法,利用已有的数据,不断优化环卫机器人车的路径规划和调度策略;实时交换环卫机器人车与道路基础设施之间的信息;建立监控管理平台;对系统进行测试和评估。本发明实现了一种基于车路协同及强化学习的环卫机器人车调度系统及方法。本发明的应用可以帮助现代城市提高环卫效率,减少环

    一种动力电池系统及动力电池系统热失控监测方法

    公开(公告)号:CN117388708A

    公开(公告)日:2024-01-12

    申请号:CN202311428167.3

    申请日:2023-10-30

    Abstract: 本发明属于动力电池技术领域,具体的说是一种动力电池系统及动力电池系统热失控监测方法,包括动力电池服役模型精准构建端、动力电池服役数据处理研究端与动力电池循环老化衰退端;所述动力电池服役模型精准构建端包括动力电池多尺度映像模型构建模块与动力电池多尺度数字孪生模块;动力电池服役周期数字孪生建模理论,揭示动力电池循环老化衰退过程中多物理场参数动态演变与耦合作用机制,阐明多影响因素耦合作用下动力电池循环老化衰退机理;探究单体不一致性作用下的动力电池多尺度性能衰退规律,形成一套面向动力电池服役周期的主动再制造时域决策方法与理论,以实现动力电池再制造生产效益最大化。

    一种动力电池热流泄放装置及动力电池热流泄放方法

    公开(公告)号:CN117352885A

    公开(公告)日:2024-01-05

    申请号:CN202311489415.5

    申请日:2023-11-09

    Abstract: 本发明属于动力电池技术领域,具体的说是一种动力电池热流泄放装置及动力电池热流泄放方法,包括以下制备步骤:通过温度检测装置进行温度监测,当电池的温度超过指定数值后,温度检测装置将信息传递给控制端,控制端启动冷却箱进行降温;通过液泵的运作将冷却箱内部的冷却液抽入排液管内,动力电池体的内部安装有吸热片,吸热片的顶端连接有散热片,吸热片可以吸收动力电池体内部的热量传递给散热片,散热片会将动力电池体的热量侧端给循环冷却管,排液管内部的冷却液会进入循环冷却管内部流动,冷却液的流动会将散热片上的热量带走,从而对动力电池体进行散热处理,提高动力电池体的散热效果,保证动力电池体的正常运作环境。

    基于车路协同及强化学习的环卫机器人车调度方法及系统

    公开(公告)号:CN116611635A

    公开(公告)日:2023-08-18

    申请号:CN202310443604.2

    申请日:2023-04-23

    Applicant: 暨南大学

    Abstract: 本发明提出了一种基于车路协同及强化学习的环卫机器人车调度方法及系统,包括:对环卫机器人车通信进行部署,通过基于车载自组织网络的通信网络实现车辆间的数据传输和通信;通过路况感知装置获取路况数据和利用传感器对环卫机器人车周围的环境进行实时感知和数据采集;采用改进的分层双重DQN算法,利用已有的数据,不断优化环卫机器人车的路径规划和调度策略;实时交换环卫机器人车与道路基础设施之间的信息;建立监控管理平台;对系统进行测试和评估。本发明实现了一种基于车路协同及强化学习的环卫机器人车调度系统及方法。本发明的应用可以帮助现代城市提高环卫效率,减少环境污染,降低人力成本,同时提高城市居民的生活品质。

    基于强化学习及遗传算法的柔性车间调度方法及模型

    公开(公告)号:CN114186749B

    公开(公告)日:2022-06-28

    申请号:CN202111546245.0

    申请日:2021-12-16

    Applicant: 暨南大学

    Abstract: 本发明提供了一种基于强化学习及遗传算法的柔性车间调度方法及模型,属于人工智能技术领域。根据柔性作业车间的特点,建立柔性作业车间调度模型;对遗传算法和基于熵的置信域优化强化学习算法中的基本参数进行初始化;利用基于熵的置信域优化算法更新遗传算法中的参数,并分别对参与交叉和变异的染色体种群进行交叉和变异操作,生成参与交叉和变异的新染色体种群;计算新种群中每个个体的适应度,确定基于熵的置信域优化算法中的状态参数,对新染色体种群执行遗传算法操作;反复执行上述迭代至截止,并输出结果。本发明将基于熵的置信域优化强化学习算法与遗传算法相结合,提高了柔性车间调度的性能,增强车间生产的鲁棒性,提高生产效率。

Patent Agency Ranking