-
公开(公告)号:CN113502413B
公开(公告)日:2021-12-31
申请号:CN202110648922.3
申请日:2021-06-10
Applicant: 暨南大学
Abstract: 本发明涉及铝合金制备技术领域,具体公开了一种LED光源散热器用铝合金材料及其制备方法。所述的LED光源散热器用铝合金材料,其包含如下重量份的原料:铝80~100份;铈0.1~0.5份;铜0.01~0.1份;镁0.1~1份;钛酸铋或改性钛酸铋20~30份。由于本发明所述的铝合金材料具有较低的热膨胀系数以及较高的导热率,因此,将其应用于制备超长距离探照用小锥角LED光源散热器,可以提高超长距离探照用小锥角LED光源散热器的散热效率以及减少超长距离探照用小锥角LED光源散热器在温差较大的环境下使用会发生变形的情况。
-
公开(公告)号:CN113502414A
公开(公告)日:2021-10-15
申请号:CN202110650229.X
申请日:2021-06-10
Applicant: 暨南大学
Abstract: 本发明公开了一种高导热航空铝合金及其在制备超大面积LED光源散热器中的应用。所述的高导热航空铝合金其制备原料包含铝、硅、铁、铜、镁、锰、镍、锡以及钛酸铋或改性钛酸铋。所述的改性钛酸铋通过包含如下步骤的方法制备得到:取钛酸铋、氧化镧以及五氧化二铌混合后进行球磨,得球磨粉体1;将球磨粉体1预烧得预烧混合物;将预烧混合物进行球磨,得球磨粉体2;所得的球磨粉体2即所述的改性钛酸铋。由于所述的高导热航空铝合金具有较低的热膨胀系数以及较高的导热率,因此,将其应用于制备超大面积LED光源散热器,可以提高散热器的散热效率以及减少散热器在温差较大的环境下发生变形的情况。
-
公开(公告)号:CN112705726A
公开(公告)日:2021-04-27
申请号:CN202011498607.9
申请日:2020-12-17
Applicant: 暨南大学
Abstract: 本发明涉及纳米银制备技术领域,具体公开了一种形貌可控的纳米银粉的制备方法。所述的制备方法包含如下步骤:将硝酸银和聚乙烯吡咯烷酮溶解在乙二醇中,然后加入聚乙二醇;反应结束后即得纳米银粉。本发明提供了一种全新的纳米银粉的制备方法,该方法可以快速制备得到形貌可控的纳米银粉;成功克服了以硝酸银为原料、以聚乙烯吡咯烷酮为稳定剂、以乙二醇为还原剂制备纳米银,无法制备形貌可控的纳米银的技术缺陷。采用本发明所述的方法,可以快速制备得到粒径分布范围较窄、粒径均匀的纳米银粉。
-
公开(公告)号:CN105001588B
公开(公告)日:2017-11-07
申请号:CN201510423807.0
申请日:2015-07-20
Applicant: 暨南大学
Abstract: 本发明提供了一种熔融沉积成型用ABS复合材料,所述复合材料包括如下按重量百分比数计的原料制成:本体法ABS 30~45;乳液法ABS 30~45;苯乙烯马来酸酐共聚物2~8;石墨烯微片1~10;多壁碳纳米管0.5~5;聚甲基丙烯酸甲酯20~40。本发明提供的ABS复合材料采用不同粒径的ABS混合形成双峰分布的ABS复合基底,两者相容性好,层间粘结性能好,所述ABS复合材料用丙酮蒸汽后处理后,能够较好的保持原有的制品尺寸精度,导电剂共混质量低,较好地改善了材料的物理力学及导电性能。
-
公开(公告)号:CN105038089A
公开(公告)日:2015-11-11
申请号:CN201510411123.9
申请日:2015-07-14
Applicant: 暨南大学
Abstract: 本发明提供了一种3D打印用导电ABS/PC复合材料,所述复合材料包括如下按重量百分数计的原料制成:本体法ABS 15~30;乳液法ABS 15~30;石墨烯微片1~5;苯乙烯-N-苯基马来酰亚胺-马来酸酐三元共聚物2~20;聚碳酸酯 30~55;多壁碳纳米管0.5~5。本发明根据不同粒径分布的ABS形成了相容性良好的ABS复合基底,并采用较少含量的多壁碳纳米管的基础上,合成得到了导电性能较好的复合材料,所述材料层间粘结性能好,表面分层现象得到极大缓解,制品表面能够较好的保持原有的尺寸精度。
-
公开(公告)号:CN103333413A
公开(公告)日:2013-10-02
申请号:CN201310309086.1
申请日:2013-07-22
Applicant: 暨南大学
Abstract: 本发明属于复合材料技术领域,公开了一种含生物碳酸钙的β晶聚丙烯复合材料及其制备方法与应用。该含生物碳酸钙的β晶聚丙烯复合材料包含以下组分:白贝粉1~30wt%;聚丙烯70~99wt%。本发明利用白贝粉作为β成核剂,当添加量达到5%的时候,诱导复合材料中聚丙烯β晶型含量达到80.1%。且白贝粉可以同时作为无机填充材料加入到聚丙烯中,达到刚韧平衡效果。本发明的制备方法简单,操作方便,得到的含生物碳酸钙的β晶聚丙烯复合材料具有高含量β晶聚丙烯的特有性能,可用于交通、建筑、餐饮用品、家电等行业领域。
-
公开(公告)号:CN118744982A
公开(公告)日:2024-10-08
申请号:CN202410744550.8
申请日:2024-06-11
Applicant: 暨南大学
Abstract: 本发明公开了一种以废烯烃类塑料和废弃碳纤维为原料制备碳纳米管的方法及其在超级电容器中的应用。所述的方法,其包含如下步骤:(1)在管式炉中通入混合气体,对废弃碳纤维材料进行热解,得脱浆碳纤维;接着将脱浆碳纤维放入H2O2溶液中进行活化得预处理碳纤维;(2)配制金属离子溶液,接着对预处理碳纤维进行电镀处理,得金属纳米微粒涂覆的碳纤维;(3)将废弃聚烯烃材料与催化剂混合后放入管式炉第一个温区,接着进行加热分解形成小分子化合物;接着在放置有铁纳米微粒涂覆的碳纤维的管式炉第二个温区进行反应得到碳纳米管。采用本发明碳纳米管制成的负极片用于超级电容器中,其在循环多次后,均具有较高的比容量以及比容量保持率。
-
公开(公告)号:CN118440366A
公开(公告)日:2024-08-06
申请号:CN202410477381.6
申请日:2024-04-19
Applicant: 暨南大学
Abstract: 本发明公开了一种木糖改性大豆分离蛋白可食用包装膜及其制备方法。所述的制备方法,包含如下步骤:S1.大豆分离蛋白溶液的制备:称取大豆分离蛋白粉末加入到蒸馏水中,加热搅拌后进行恒温水浴处理,再经冷却后得到大豆分离蛋白溶液;S2.改性大豆分离蛋白膜液的制备:在大豆分离蛋白溶液中加入交联剂,调节溶液pH至碱性,经搅拌后进行恒温水浴处理,恒温水浴处理结束后立即进行冰浴;冰浴结束后离心取上清,然后加入增塑剂,得改性大豆分离蛋白膜液;S3.成膜处理:将改性大豆分离蛋白膜液倒入模板中,经干燥和保存处理后即得所述的木糖改性大豆分离蛋白可食用包装膜。研究表明,本发明所述的木糖改性大豆分离蛋白可食用包装膜,具有较好的力学性能。
-
公开(公告)号:CN118146574A
公开(公告)日:2024-06-07
申请号:CN202410265194.1
申请日:2024-03-08
Applicant: 暨南大学
IPC: C08L9/06 , C08L23/12 , C08K3/34 , C08K3/36 , C08K5/18 , C08K5/13 , C08K9/02 , C08K9/00 , F16L11/04 , F16L57/06
Abstract: 本发明公开了一种软管材料及其制备方法与在水管中的应用。所述的软管材料,其包含如下重量份的原料组分:热塑性橡胶80~100份;聚丙烯20~40份;耐磨填料30~40份;抗老剂1~3份;分散剂1~3份;偶联剂1~3份。研究表明,本发明所述的软管材料具有较好的耐磨性能以及抗老化性能;进一步将采用本发明软管材料制备得到的软管,可以替代美国发明专利US16681769公开的具有弹性内层、弹性织物增强层以及弹性外层等三层结构的可伸缩柔性软管;进而可以解决其结构复杂、生产成本高的问题;具有重要的应用价值。此外,由本发明所述软管材料制成的水管,能够进行横向膨胀以及纵向膨胀,并且其膨胀系数达到2.5倍以上;充放次数达到1000次以上,具有较长的使用寿命。
-
公开(公告)号:CN117822081A
公开(公告)日:2024-04-05
申请号:CN202311699662.8
申请日:2023-12-12
Applicant: 暨南大学
Abstract: 本发明涉及电镀技术领域,具体公开了一种复合镀液以及复合镀层的制备方法。所述的复合镀液,包含如下含量的组分:NiSO4·6H2O 30~40g/L;Na2WO4·H2O 60~80g/L;Na3C6H5O7·2H2O 110~130g/L;NH4Cl 30~40g/L;SiC 30g/L;表面活性剂0.1~0.2g/L。所述复合镀层的制备方法,其包含如下步骤:S1.将金属基体放入所述的复合镀液中进行复合电沉积;S2.复合电沉积结束后,取出镀后样品进行清洗;清洗后于真空条件下进行热处理;热处理结束后得复合镀层。研究表明,在本发明所述的复合镀液以及复合镀层的制备方法下制备得到的复合镀层,其不仅仅具有较高的硬度,同时还具有较好的结合强度;因此,本发明方法制备得到的Ni‑W‑SiC复合镀层可以作为高污染硬铬镀层的替代技术,具有广阔的应用前景。
-
-
-
-
-
-
-
-
-