-
公开(公告)号:CN119670916A
公开(公告)日:2025-03-21
申请号:CN202510200623.1
申请日:2025-02-24
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N20/00 , G06F18/213 , G06F18/2115 , G06F18/2413
Abstract: 本发明属于联邦学习的技术领域,具体涉及一种基于特征对比优化与分类器动态集成的联邦学习方法及装置。其方法包括:通过服务器初始化全局模型并将其下发给参与联邦学习的#imgabs0#个客户端,客户端基于接收到的全局模型进行本地模型更新以及对更新后的本地模型进行训练,再利用训练后的本地特征提取器对其本地私有数据集进行特征提取,以构建本地特征原型集合,再将本地模型、本地特征原型集合、客户端总样本量上传至服务器,服务器在全局聚合时,使用对比学习技术提升全局特征原型质量,最后将聚合得到的全局原型和全局特征原型集合下发给各客户端,执行下一轮次的学习,直至本地模型收敛或到达设定的通信轮次。
-
公开(公告)号:CN119670760A
公开(公告)日:2025-03-21
申请号:CN202510174481.6
申请日:2025-02-18
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东山科智能科技有限公司 , 山东正中信息技术股份有限公司
IPC: G06F40/30 , G06F40/253 , G06F40/194 , G06F40/211
Abstract: 本发明属于自然语言处理技术领域。提供了一种基于零资源框架的细粒度大模型幻觉处理方法及系统,通过大语言模型进行预处理后的文本的多维异常检测,得到多维异常检测结果;根据多维异常检测结果进行异常修正优先级排序;根据句法分析结果以及生成的句法依赖树,动态调整上下文窗口范围;结合调整后的上下文窗口范围,根据异常修正优先级排序结果,进行高风险词汇和句子的优先修正;评估修正后的内容,符合终止条件时得到修正后的最终文本。本发明实现了对检测内容的过度置信、细微语义和语法偏差幻觉检测,提高了大语言模型的幻觉检测处理能力,特别是对于细粒度幻觉问题的检测处理能力。
-
公开(公告)号:CN119622379A
公开(公告)日:2025-03-14
申请号:CN202411695228.7
申请日:2024-11-25
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 泰华智慧产业集团股份有限公司
IPC: G06F18/2321 , G06F18/10 , G06F18/214 , G06F18/21 , G06F18/213 , G06N3/0455 , G06N3/08
Abstract: 本发明属于数据处理分析的技术领域,更具体地,涉及一种基于动态聚类算法DeepDPM的工业系统运行模式刻画方法。所述方法包括:首先收集系统实际运行数据。将数据进行预处理,并按照固定比例划分训练集和验证集;然后建立AE模型,使用训练集对AE进行预训练,并保存训练完成后的AE模型和权重,再使用验证集来验证训练后AE模型的效果。接下来将预处理后的数据输入到训练好的AE模型中进行特征提取;再将提取出的特征数据输入到DeepDPM模型中进行聚类;最后使用一种降维可视化算法:t分布随机邻域嵌入,简称t‑SNE,对聚类结果进行可视化展示。本发明解决了提高工业系统中运行模式预测的效率和准确性问题。
-
公开(公告)号:CN119557409A
公开(公告)日:2025-03-04
申请号:CN202510121723.5
申请日:2025-01-26
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东山科智能科技有限公司 , 山东浪潮智慧医疗科技有限公司 , 山东健康医疗大数据有限公司
IPC: G06F16/3329
Abstract: 本发明涉及知识问答技术领域,涉及基于多模块协同优化的智能问答方法及系统,方法包括:将待回答的问题,输入到知识问答模型中,知识问答模型输出知识问答结果;模型中的知识范围判断模块判断依靠自身知识能否解决问题,如果不能就进入动态检索模块;动态检索模块根据待回答问题对记忆知识库的内容进行相似性检索,如果检索结果不符合要求,则进入多层次问题改写模块;多层次问题改写模块对待回答的问题进行改写,将改写的问题输入知识筛选模块;知识筛选模块根据改写的问题,输出筛选出的文档,自反思优化模块根据文档和问题生成初步答案,并判断初步答案的是否合理,如果不合理就进行自反思优化,为智能问答技术的发展提供了新的解决方案。
-
公开(公告)号:CN119513498A
公开(公告)日:2025-02-25
申请号:CN202411673870.5
申请日:2024-11-21
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 青岛理工大学
IPC: G06F18/10 , G06F18/213 , G06F18/22 , G06N3/0442 , G06N3/0464 , G06N3/08 , G06N20/20
Abstract: 本发明属于时间序列预测的技术领域,更具体地,涉及一种基于深度集成学习模型和高低频分离的时间序列数据预测方法。所述方法包括:收集系统中的时间序列数据,对得到的数据进行预处理;对原始时间序列数据进行VMD变分模态分解,将时间序列分解成K个有限带宽的模态分量;联合最大信息系数法和重构误差分析法来确定最佳的分解模态数量K;对分解的所有模态使用过零率和中心频率来划分高低频分量;分别针对高频分量和低频分量建立合适的预测模型;将所有模态预测结果进行叠加,得到最终的时间序列预测结果。本发明组合了多种深度学习模型使得预测方法具备更强的灵活性和适应性,能够针对不同特征的分量选择合适的模型进行预测,从而提升整体性能。
-
公开(公告)号:CN118445817B
公开(公告)日:2025-02-07
申请号:CN202410903625.2
申请日:2024-07-08
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于信息安全的技术领域,更具体地,涉及一种基于历史全局模型的增强联邦学习模型防御的方法、装置及可读计算机存储介质。所述方法包括服务器端向客户端发送全局模型,攻击者客户端截获每一轮的全局模型,放入历史全局模型储存池中;服务器随机选择部分客户端使用本端的本地数据集进行训练得到客户端局部模型,攻击者客户端在历史全局模型储存池中选择一个历史全局模型作为攻击目标模型;客户端将训练的本地局部模型上传至服务器,服务器进行聚合,再发送给各客户端;引入动态加权聚合机制,得到最优全局模型的参数。本发明解决了当前的防御方法在非独立同分布环境下的有效性与攻击成功率都较低,现有防御机制的有效性较低的问题。
-
公开(公告)号:CN119358708A
公开(公告)日:2025-01-24
申请号:CN202411931128.X
申请日:2024-12-26
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于联邦学习的技术领域,更具体地,涉及基于扩散模型的自适应双边蒸馏个性化联邦学习方法。所述方法通过设计一种指导机制,使全局模型与本地模型之间进行相互蒸馏,从而实现知识的高效传递,增强个性化模型对客户端特定数据分布的适应性。同时,引入条件扩散模型生成高质量的伪数据,并利用这些伪数据对聚合后的全局模型进行微调。该过程不仅有效弥补了局部‑全局相互蒸馏过程中可能丢失的全局信息,还进一步优化了全局模型的表现。通过结合相互蒸馏和条件扩散微调技术,本发明在保护数据隐私的同时,实现了个性化性能与全局泛化能力的平衡,适用于非独立同分布non‑IID数据环境下的多客户端协作场景。
-
公开(公告)号:CN119202998A
公开(公告)日:2024-12-27
申请号:CN202411373067.X
申请日:2024-09-29
Applicant: 国网山东省电力公司电力科学研究院 , 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/2433 , G06F18/213 , G06F18/25 , G06N3/0442 , G06N3/045 , G06N3/0455 , G06N3/0464 , G06N3/084 , H04L9/40 , G06F123/02
Abstract: 本发明公开了一种工控流量异常检测方法、系统及电子设备,属于流量异常检测技术领域。包括:获取工况网络的实时流量数据包并进行预处理,生成原始流量特征序列和时频特征序列;通过训练好的混合神经网络模型对原始流量特征序列和时频特征序列进行并行处理,分别获取数据特征映射结果和物理特征映射结果并自适应融合,获取流量异常检测结果;其中,混合神经网络模型利用D‑ST‑LSTM网络学习原始流量特征序列中的深层次时序信息,利用DAE‑CNN网络对时频特征序列进行局部空间特征提取。能够充分利用流量数据的时间和空间维度信息,提高工控流量异常检测的精度;解决了现有面对低特征辨识度的异常流量异常检测效果有限的问题。
-
公开(公告)号:CN119201463A
公开(公告)日:2024-12-27
申请号:CN202411351906.8
申请日:2024-09-26
Applicant: 国网山东省电力公司电力科学研究院 , 山东省计算中心(国家超级计算济南中心)
Abstract: 本申请提供一种电网巡检系统能耗优化处理方法、装置、设备及介质,涉及电网系统巡检技术领域,在判断当前时隙处于系统时隙内时,将获取到的当前时隙无人机的实时位置信息和地面传感设备的实时计算任务信息输入预设地面传感设备能量消耗模型,以所有地面传感设备的总能量消耗最小为模型优化目标进行优化求解,然后根据获得目标移动策略和目标任务卸载策略分别控制所述无人机的移动轨迹和任务卸载,在考虑无人机连续动作空间情况下,将无人机和地面传感设备协作组成移动边缘计算系统,对无人机路径规划和计算卸载策略进行联合优化,提升了地面传感设备能效,增强了系统性能。
-
公开(公告)号:CN114627847B
公开(公告)日:2024-12-17
申请号:CN202210231973.0
申请日:2022-03-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G10K11/178 , G10L21/0216 , G10L25/30
Abstract: 本发明属于主动降噪技术领域,提供了一种基于频谱映射的主动降噪方法及系统,基于频谱映射,将噪声信号或者到噪声的语音信号输入LSTM网络对噪声信号或者带噪声语音信号中的噪声信号的频谱进行映射输出,根据相消干涉原理对噪声进行抵消,达到在误差麦克风处降低噪声声压级的目的,最后将误差信号用于计算损失函数并反馈给LSTM网络,直至网络损失函数最小并达到收敛状态,此方法将深度学习的知识用于主动降噪领域,不但提高了降噪效果,并且降低了传统信号处理方法对硬件设备的依赖问题。
-
-
-
-
-
-
-
-
-