-
公开(公告)号:CN104140077A
公开(公告)日:2014-11-12
申请号:CN201410385541.0
申请日:2014-08-07
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于原子力显微镜在薄壁微小球面加工微纳米结构的五轴加工装置及方法。所述装置包括AFM、二维微调心机构、精密气浮轴系、二维高精度定位平台和带动AFM进行转动的电动旋转台,二维微调心机构与精密气浮轴系的上端连接,精密气浮轴系的下端与二维高精度定位平台连接,二维高精度定位平台底座固连在AFM的样品台上,电动旋转台与AFM相连接。本发明利用原子力显微镜AFM的加工的优势,并且改善了在薄壁微球表面加工范围受限的问题,实现了基于AFM在薄壁微小球面加工微纳米结构。本发明加工方法简单,无需复杂的加工系统,操作简单,并且可以在薄壁微球表面上得到精度达到纳米量级的微纳米结构。
-
公开(公告)号:CN104098066A
公开(公告)日:2014-10-15
申请号:CN201410346603.7
申请日:2014-07-21
Applicant: 哈尔滨工业大学
Abstract: 电化学微纳加工设备,它属于一种纳米加工装置。为解决现有的电化学微纳加工设备成本过高、电化学加工技术应用不完善的问题。隔振基座包括台面、支架横梁以及基座,台面固定安装在基座上端面,台面上可拆卸安装有支架横梁,X向直线导轨固定平放于台面上,支架横梁垂直于X向直线导轨设置,水平旋转组件固定在X向直线导轨上,水平调整部件固定在水平旋转组件上,Y向直线导轨固定在支架横梁的前侧面上,Z向直线导轨固定在Y向直线导轨上,电极逼近部件固定在Z向直线导轨上。本发明具有精度高、加工效果好等优点,用于工件的电化学微纳加工。
-
公开(公告)号:CN103759941A
公开(公告)日:2014-04-30
申请号:CN201410042639.6
申请日:2014-01-29
Applicant: 哈尔滨工业大学
IPC: G01M13/02
Abstract: 一种精密主轴回转精度检测装置及方法,属于精密主轴回转误差测量技术领域。本发明所述的装置包括原子力显微镜AFM、平面样品、手动二维调整台、二维电动位移台和精密主轴控制器,其中,AFM与平面样品配合使用获得刻划形貌图,平面样品固定在手动二维调整台的上部,手动二维调整台的底部与被测精密主轴的上端连接,被测精密主轴的下端与二维电动位移台连接。本发明实施例将通过原子力显微镜的纳米刻划加工和检测一体化的优势,在检测过程中无需采用基准零件,操作简单,并且可以使测量精度达到纳米量级,同时可检测精密主轴的径向和轴向回转误差,提高了精密主轴回转误差的精度。
-
公开(公告)号:CN102252617B
公开(公告)日:2013-01-16
申请号:CN201110084661.3
申请日:2011-04-06
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种基于形貌配准分析的精密主轴回转精度检测方法,将表面样品安装在待测精密主轴上,控制系统控制待测精密主轴到一个角度θ位置,依次采集待测精密主轴在完整圆周位置上表面样品的表面形貌图;形貌数据配准分析处理系统将所获得的若干表面形貌图进行分析,并进行误差评价。本发明对随精密主轴回转的表面样品形貌进行测量及后续形貌配准分析处理,表面样品没有很高的精度要求,不需要昂贵的标准外圆轮廓或复杂测试系统及测试过程,如果选用二维形貌/图像传感器,可测量主轴的径向回转误差;如果选用三维形貌测量传感器,可同时测量主轴径向和轴向回转误差;采用高分辨率的测量传感器,则可实现纳米级精度的主轴回转误差检测。
-
公开(公告)号:CN102583229A
公开(公告)日:2012-07-18
申请号:CN201210066835.8
申请日:2012-03-14
Applicant: 哈尔滨工业大学
IPC: B81C1/00
Abstract: 面向微结构制造具有力反馈控制的微探针刻划加工方法。本发明属于微纳结构加工技术领域。本发明可以实现低成本、高精度、微米尺度沟槽等复杂微结构的加工。方法是:先将工件放置于X-Y向精密工作台上,根据所设定的力初值,简称设定值,使微探针刀具自动逼近工件表面并维持一个恒定的力F,该恒定的力F的初值为5-20mN,当微探针刀具与工件表面接触后,开始刻划加工,启动力闭环控制模块,Z向微动工作台上下移动,实现垂直力的实时闭环控制,X-Y向精密工作台带动工件做精密移动,实现微沟槽结构的加工;微沟槽结构加工好后,力闭环控制结束,微探针刀具由Z向粗动工作台带动向上移动脱离工件表面,加工结束。本发明用于加工工件的微沟槽结构。
-
公开(公告)号:CN102500760A
公开(公告)日:2012-06-20
申请号:CN201110333830.2
申请日:2011-10-28
Applicant: 哈尔滨工业大学
Abstract: 一种基于光学图像重构的尖刃金刚石刀具旋转对心方法,涉及超精密切削加工方法,解决了目前缺少对金刚石刀具的刀尖无损伤的旋转对心方法的问题,它包括具体步骤如下:步骤一、将CCD光学成像装置设置在尖刃金刚石刀具的正上方,CCD光学成像装置放大倍数调为15~25倍;步骤二、CCD光学成像装置对尖刃金刚石刀具的刀尖区域进行成像,对获得的光学图像建立坐标系XOZ,A点处的坐标(x1,z1),轴心为P(x,z)点;步骤三、获得B点处的坐标(x2,z2);步骤四、根据步骤二和步骤三获得的两幅光学图像获得坐标差值:Δ1=x2-x,Δ2=z2-z;步骤五调整刀具靠近P点。用于金刚石刀具的刀尖无损伤对心。
-
公开(公告)号:CN101003357B
公开(公告)日:2011-01-19
申请号:CN200710071629.5
申请日:2007-01-12
Applicant: 哈尔滨工业大学
IPC: B82B3/00
Abstract: 基于原子力显微镜恒力模式的纳米微小结构加工方法,本发明涉及纳米量级微小结构的加工方法。它克服了现有的AFM的纳米微小结构加工方法加工深度不可控以及所能精确加工的尺寸范围非常有限的缺陷。本发明系统增加了二维微动工作台控制电路和二维微动工作台,本方法的主单片机通过AFM加工驱动电路驱动扫描陶管进行相应的伸长动作,使探针的针尖刺入被加工工件表面;扫描陶管的变化量由扫描陶管检测电路实时检测并传送给主单片机,在主单片机的控制下扫描陶管持续进行相应方向伸长动作,直到用户的加工深度设定值等于扫描陶管进给量(dZ)减去设定微悬臂的相对反弹量(dS),主单片机驱动二维微动工作台完成水平方向上的运动,直到刻划工作结束。
-
公开(公告)号:CN101003357A
公开(公告)日:2007-07-25
申请号:CN200710071629.5
申请日:2007-01-12
Applicant: 哈尔滨工业大学
IPC: B82B3/00
Abstract: 基于原子力显微镜恒力模式的纳米微小结构加工方法,本发明涉及纳米量级微小结构的加工方法。它克服了现有的AFM的纳米微小结构加工方法加工深度不可控以及所能精确加工的尺寸范围非常有限的缺陷。本发明系统增加了二维微动工作台控制电路和二维微动工作台,本方法的主单片机通过AFM加工驱动电路驱动扫描陶管进行相应的伸长动作,使探针的针尖刺入被加工工件表面;扫描陶管的变化量由扫描陶管检测电路实时检测并传送给主单片机,在主单片机的控制下扫描陶管持续进行相应方向伸长动作,直到用户的加工深度设定值等于扫描陶管进给量(dZ)减去设定微悬臂的相对反弹量(dS),主单片机驱动二维微动工作台完成水平方向上的运动,直到刻划工作结束。
-
公开(公告)号:CN1253285C
公开(公告)日:2006-04-26
申请号:CN200410013586.1
申请日:2004-02-27
Applicant: 哈尔滨工业大学
Abstract: 微机械零件三维加工装置,它属于纳米加工装置。现有的基于扫描探针显微镜的加工还只局限于平面二维微图形,没有形成一整套类似于超精密金刚石车削加工的加工机理与相关技术。本发明包括机械台体(1)、设置在机械台体(1)上的三维粗动工作台(2),在机械台体(1)上设有加工头部件(3)和光学系统(4),在三维粗动工作台(2)上设有主轴系统(5),所述三维粗动工作台(2)、加工头部件(3)、光学系统(4)、主轴系统(5)都与控制系统(6)相连。本发明产品具有精度高、效果好的优点。
-
公开(公告)号:CN118310911A
公开(公告)日:2024-07-09
申请号:CN202410449409.5
申请日:2024-04-15
Applicant: 哈尔滨工业大学
Abstract: 一种导电滑环多功能真空摩擦磨损实验装置及使用方法,属于摩擦测试技术领域。机架上安装有动力驱动模块,动力驱动模块上安装有摩擦磨损模块,摩擦磨损模块设置在真空腔内,使摩擦磨损模块在模拟真空环境内对滑环转子进行摩擦磨损实验,并在摩擦磨损模块的滑环转子夹具设置温控模块,并为摩擦磨损模块连入润滑调节模块、测量控制模块、信息采集模块。测试中真空腔内温度、气压、通入电流、润滑剂通入时间、刷‑滑环摩擦时间、摩擦角度、接触力和接触角度均可控制调节,实验结束可直接导出对应工况下摩擦系数曲线,满足大部分导电滑环摩擦学实验测试需要,为模拟特殊工况的导电滑环摩擦磨损研究提供更多的基础设备。
-
-
-
-
-
-
-
-
-