-
公开(公告)号:CN104617280A
公开(公告)日:2015-05-13
申请号:CN201510043175.5
申请日:2015-01-28
Applicant: 哈尔滨工业大学
IPC: H01M4/38 , H01M4/1395
CPC classification number: H01M4/364 , H01M4/0404 , H01M4/0492 , H01M4/13 , H01M4/139 , H01M4/386 , H01M4/587 , H01M10/0525
Abstract: 本发明公开了一种锂离子电池用免粘结剂石墨烯/硅电极及其制备方法。所述石墨烯/硅电极由石墨烯/硅多层结构层和铜箔构成,其制备步骤如下:一、制备氧化石墨溶液;二、制备石墨烯胶体;三、铜箔的表面改性处理;四、制备免粘结剂石墨烯/硅电极:将硅分散在去离子水中,加入表面活性剂,超声分散均匀;加入石墨烯胶体,经超声、搅拌使分散均匀,得到石墨烯/硅混合料浆;将石墨烯/硅混合料浆用涂膜器均匀的涂覆在处理后的铜箔上;真空干燥后进行冷压处理,制备出粘结效果非常好的免粘结剂石墨烯/硅电极。本发明制备的石墨烯/硅电极,活性物质与铜箔结合力高、容量高、循环稳定性好,不需要使用粘结剂,工艺简单,易于工业的大规模生产。
-
公开(公告)号:CN104577123A
公开(公告)日:2015-04-29
申请号:CN201510052446.3
申请日:2015-02-02
Applicant: 哈尔滨工业大学
IPC: H01M4/58
CPC classification number: H01M4/5825 , H01M2220/20
Abstract: 本发明公开了一种锂离子电池正极材料的制备方法,其步骤如下:一、称取锂源化合物、磷源化合物分散在溶剂中,将两种溶液混合,加入添加剂后调节pH值8~12,反应10~60 min后,过滤、洗涤、干燥得到磷酸锂前驱体;二、将磷酸锂与锰源化合物分散在溶剂中,加入添加剂后,将溶液密闭于反应釜系统中进行溶剂热反应,洗涤、干燥得到纯相磷酸锰锂;三、将磷酸锰锂与有机碳源化合物分散在溶剂中,搅拌、自然蒸干;四、将步骤三得到的混合物在惰性气氛下热处理,自然冷却至室温,即得到磷酸锰锂-碳复合材料。本发明通过设计一种空心多孔的结构,极大地提高了其电化学性能,尤其是循环稳定性,且该方法能耗低,工艺条件易控制,有利于实现工业化生产。
-
公开(公告)号:CN113176519B
公开(公告)日:2024-12-03
申请号:CN202110412445.0
申请日:2021-04-16
Applicant: 哈尔滨工业大学
IPC: G01R31/392 , G01R31/387 , G01R31/382
Abstract: 本发明公开了一种基于粒子辐照的锂离子电池寿命加速方法,包括以下步骤:S1:对电池进行初始容量标定;S2:搁置5‑30min;S3:对电池按特定制度进行充电,同时进行脉冲粒子辐照;S4:搁置5‑30min;S5:对电池按特定制度进行放电,同时进行脉冲粒子辐照;S6:重复S2~S5,直至电池容量衰减至寿命终止。本发明能够加快锂离子电池容量衰减,缩短电池老化时间,大大提高了实验效率,具有重要的应用意义。
-
公开(公告)号:CN118572033A
公开(公告)日:2024-08-30
申请号:CN202410700193.5
申请日:2024-05-31
IPC: H01M4/133 , H01M10/054 , H01M4/1393 , H01M4/04
Abstract: 一种改性硬碳负极极片及其制备方法和应用,属于二次钠离子电池技术领域,具体方案如下:所述改性硬碳负极极片由界面改性剂原位表面处理硬碳负极极片得到,界面改性剂为三甲氧基硅烷和分子式为(R1)2BR2的化合物的醇基溶液或醚基溶液,R1为可水解的甲氧基、乙氧基、氨甲氧基及氨乙氧基官能团,R2为不可水解的、疏水的烃基、苯环、酯基官能团;本发明通过三甲氧基硅烷和(R1)2BR2水解缩合反应在硬碳负极表面构筑了分子网络界面,形成均一稳定的SEI膜,有效提升硬碳负极与碳酸酯基电解液的兼容性,由此改性硬碳负极所制备的二次钠离子电池具有较好的首次库伦效率、循环稳定性及倍率性能。
-
公开(公告)号:CN115043430B
公开(公告)日:2024-02-09
申请号:CN202210589044.7
申请日:2022-05-26
Applicant: 哈尔滨工业大学
Abstract: 一种镨元素掺杂的多孔球形铌酸钛材料的制备方法及应用,属于锂离子电池领域。所述方法为:按照钛源、铌源和镨源为1:2‑x:x的摩尔比取料,x为0.01~0.1,将钛源化合物溶于无水乙醇,控制钛源浓度为0.05‑0.2mol/L,然后再加入铌源和镨源化合物,并混合均匀;在均相反应器中150‑200℃反应12h‑36h获得前驱体;离心分离清洗三次,将沉积物收集80℃真空干燥12h;将前驱体在高温炉中空气条件700‑800℃煅烧4‑12h。本发明中由于特殊多孔球形形貌及一次纳米颗粒的要求,煅烧温度为700~800℃,减少了材料制备过程中的能源消耗。
-
公开(公告)号:CN112551582B
公开(公告)日:2022-09-23
申请号:CN202011455143.3
申请日:2020-12-10
Applicant: 哈尔滨工业大学
IPC: C01G33/00 , H01M4/485 , H01M4/62 , H01M10/0525
Abstract: 本发明公开了一种氮掺杂的缺氧型铌酸钛电极材料的制备方法及应用,涉及锂离子电池技术领域,具体包括以下步骤:步骤一、称取铌源和钛源置于球磨罐中,以有机溶剂作为分散介质,使原料充分球磨混合得到混合物;步骤二、将步骤一所得混合物干燥,得到前驱体;步骤三、将步骤二所得前驱体在NH3气氛下进行管式炉煅烧处理,自然降温至常温后即得到氮掺杂的缺氧型铌酸钛电极材料。本发明在NH3气氛下煅烧改性,不但可以制造铌酸钛的缺氧态,拓宽锂离子进入电极的通道,使得材料可以存储更多的锂离子,而且引入氮元素进行掺杂,氮掺杂有益于提供更多活性位点,提高材料的电导性,使得N‑TiNb2O7‑x电极材料具有优异的电化学性能。
-
公开(公告)号:CN115043430A
公开(公告)日:2022-09-13
申请号:CN202210589044.7
申请日:2022-05-26
Applicant: 哈尔滨工业大学
Abstract: 一种镨元素掺杂的多孔球形铌酸钛材料的制备方法及应用,属于锂离子电池领域。所述方法为:按照钛源、铌源和镨源为1:2‑x:x的摩尔比取料,x为0.01~0.1,将钛源化合物溶于无水乙醇,控制钛源浓度为0.05‑0.2mol/L,然后再加入铌源和镨源化合物,并混合均匀;在均相反应器中150‑200℃反应12h‑36h获得前驱体;离心分离清洗三次,将沉积物收集80℃真空干燥12h;将前驱体在高温炉中空气条件700‑800℃煅烧4‑12h。本发明中由于特殊多孔球形形貌及一次纳米颗粒的要求,煅烧温度为700~800℃,减少了材料制备过程中的能源消耗。
-
公开(公告)号:CN114927662A
公开(公告)日:2022-08-19
申请号:CN202210588013.X
申请日:2022-05-26
Applicant: 哈尔滨工业大学
IPC: H01M4/36 , H01M4/38 , H01M4/48 , H01M10/0525 , H01G11/46
Abstract: 本发明公开了一种氧含量可控的SiOx材料的制备方法及其应用,涉及能源材料技术领域,所述制备方法为:将含硅盐放在含有低温熔盐和含氧化合物的混合物中,经过熔盐剥离和化学氧化后,得到片层状SiOx材料,然后依次用盐酸、去离子水清洗得到精制的片层状SiOx材料。本发明的制备方法易于大批量制备,得到的片层状SiOx材料可以用作锂离子电池的负极材料,并且能够表现出优异的电化学性能。
-
公开(公告)号:CN113675376A
公开(公告)日:2021-11-19
申请号:CN202110968660.9
申请日:2021-08-23
Applicant: 哈尔滨工业大学
IPC: H01M4/134 , H01M4/1395 , H01M10/054 , H01M10/058
Abstract: 一种无枝晶的基于负极表面固/液相转化的碱金属离子电池,它属于碱金属离子电池领域。本发明电池在组装前负极极片的材料为金属钠、金属钾、三维载体表面负载金属钠或者金属钾中的一种,正极极片的材料为含钠离子的正极材料、含钾离子的正极材料中的一种,电解液为含活性钠离子或者钾离子的电解液,电池通过充放电过程,在固态负极表面原位形成液态合金。本发明立足于碱金属电池,液态合金在充电过程中形成,并且附着在金属钠表面,形成表面液相、本体固相的两相结构。在放电过程中,表面液相失去金属钾,由液相转为固相,因此在充放电过程中实现固液相的转变,以提高其高倍率充放电能力的同时,抑制碱枝晶的生成,提高循环能力以及安全性。
-
公开(公告)号:CN113437249A
公开(公告)日:2021-09-24
申请号:CN202110729893.3
申请日:2021-06-29
Applicant: 哈尔滨工业大学
IPC: H01M4/13 , H01M4/139 , H01M4/04 , H01M10/052 , H01M10/0525
Abstract: 本发明公开了一种基于渗透法制备的全固态锂电池复合正极及其制备方法,涉及全固态锂电池技术领域。所述全固态锂电池正极为基于熔融渗透法得到的复合正极。本发明中,通过将煅烧得到的高离子电导率的Li1+xOHBrx在加热的条件下熔融渗透到正极极片的孔隙中,进而得到复合正极。该复合正极表面致密、均匀、孔隙率极低,并且可与固态电解质形成一个接触良好的固‑固界面,从而增大了固‑固接触面积,提供了稳定的、快速的锂离子通道,降低了界面电阻,最终使固态电池的性能得到了显著提高。
-
-
-
-
-
-
-
-
-