一种基于相似概念对的领域概念上下位关系抽取方法

    公开(公告)号:CN105808525B

    公开(公告)日:2018-06-29

    申请号:CN201610186810.X

    申请日:2016-03-29

    Abstract: 本发明提供一种基于相似概念对的领域概念上下位关系抽取方法,包括以下步骤:步骤1,领域概念集合由若干个领域概念组成;基于概念聚类的方法从领域概念集合中抽取相似的领域概念;步骤2,获得可能存在上下位关系的候选概念对,然后根据步骤1获取的相似概念产生相似候选概念对;步骤3,利用知识库获取部分训练数据,并通过相似候选概念对共同表征关系特征,实现基于多句特征的关系抽取,从而抽取到领域概念上下位关系。优点为:本发明可以突破语料规模的限制,利用多句特征抽取领域概念的上下位关系,可提升领域概念上下位关系抽取的准确率。

    针对特定领域的新词发现方法

    公开(公告)号:CN105760366B

    公开(公告)日:2018-06-29

    申请号:CN201610150038.6

    申请日:2016-03-16

    Abstract: 本发明提供一种针对特定领域的新词发现方法,包括以下步骤:步骤1,文档预处理;步骤2,构建候选新词集;其中,每个候选新词由词语、该词语距离所述中心词语的距离向量值以及所述中心词语均采用新词表述方式表达。步骤3,候选新词挖掘;优点为:针对特定领域的新词发现方法,采用更灵活的新词表达方式,将数据挖掘领域的关联规则方法引入新词发现过程,并创新地提出将词汇与指定关键词的距离向量作为关联规则挖掘的重要特征,由此可快速准确全面的识别出文档包含的所有新词。

    一种基于多模型多通道的人脸识别方法及系统

    公开(公告)号:CN108171223A

    公开(公告)日:2018-06-15

    申请号:CN201810162040.4

    申请日:2018-02-27

    Abstract: 本发明是一种基于多模型多通道的人脸识别方法及系统,具体是指利用不同的人脸识别模型生成不同的人脸特征,不同的特征携带不同的信息,融合这些特征来进行人脸识别能很大程度上提高识别率,涉及人脸识别技术领域。本发明通过普通摄像头获取人脸图像,利用人脸检测算法检测是否出现人脸,在有人脸的基础上分割人脸区域,对分割出来的图像做预处理。对预处理后的图像提取不同模型所对应的特征,然后对这些特征进行特征处理,最后使用余弦距离来度量待识别人员与数据库中已注册人员的特征的相似度。该发明克服了现有技术存在的方法精确度不高,对于人脸环境变化(光照、表情、姿态、遮挡)鲁棒性低的缺点,能有效的提高人脸识别的准确率。

    微博相关人物推荐方法
    74.
    发明公开

    公开(公告)号:CN107066554A

    公开(公告)日:2017-08-18

    申请号:CN201710183767.6

    申请日:2017-03-24

    Abstract: 本发明公开了一种微博相关人物推荐方法,包括:步骤一、微博用户识别:解析当前用户所有博文中的多个关键字以及每个关键字的权重Wki;获取至少一篇相匹配博文,相匹配的博文具有所述多个关键字,获取各相匹配博文的微博主,再获取各微博主对多个关键字中各关键字的权重UWki;步骤二、相关用户过滤:从所获取的微博主中筛选掉已经被当前用户关注的微博主,从而获得至少一个相关用户;步骤三、用户相关性权重计算:依据相关性权重公式计算每个相关用户的相关性权重;步骤四、根据所述至少一个相关用户的相关性权重,将相关性权重排名在排序规定值之前的相关用户推荐给当前用户。本发明可以使用户更加方便直接地关注自己感兴趣的内容和微博人物。

    一种基于微博特定事件的影响力计算方法

    公开(公告)号:CN106980692A

    公开(公告)日:2017-07-25

    申请号:CN201710213302.0

    申请日:2017-04-01

    Abstract: 本发明涉及一种基于微博特定事件的影响力计算方法,属于社交网络分析及数据挖掘技术领域。本发明依据传播学中事件发展的五个阶段对特定事件进行了相关分析划分并应用于影响力计算中,主要针对微博文本数据及基础的用户数据进行统计处理与自然语言处理,计算传播角度和内容角度兼顾的六项影响力指标,并使用K‑means机器学习算法对子话题进行划分;最终得出特定事件的影响力热度指数EII、事件内的用户影响力排行榜、消息影响力排行榜。对比现有技术,本发明考虑微博文本的内容指标,较全面而准确地反映了事件各方面的信息,具有很强的现实意义和实用价值。此外,本发明方法计算的时空耗费不高,易于模块化,可投入大规模的数据计算,具有较好的稳定性。

    一种网络话题热度预测方法

    公开(公告)号:CN106557552A

    公开(公告)日:2017-04-05

    申请号:CN201610958001.6

    申请日:2016-10-27

    Abstract: 本发明公开了一种网络话题热度预测方法。它包括话题检测、热度预测建模、预测热度值计算三个步骤。话题检测部分负责从网络数据中获取与用户给定话题关键词相关的话题数据。预测建模部分按照用户设定的时间粒度大小统计话题检测结果中每个时间段内的话题热度值,并计算高斯过程模型关于话题热度统计时间点的协方差矩阵,构建基于高斯过程的预测模型。预测热度值计算部分针对用户给定的预测时间点,利用构建的高斯过程模型计算话题在给定时间点的热度值。本发明综合利用信息检索技术、分类技术进行话题检测,利用高斯过程模型来进行话题热度预测,提高了话题预测的实用性和有效性。

    一种计算微博用户影响力的方法

    公开(公告)号:CN105205146A

    公开(公告)日:2015-12-30

    申请号:CN201510600289.5

    申请日:2015-09-18

    CPC classification number: G06F17/3089

    Abstract: 本发明公开了一种计算微博用户影响力的方法,属于数据挖掘领域,具体步骤如下:一、收集每日的微博流数据;步骤二、服务器将微博流数据平均分发到多个端口;步骤三、对流数据进行特征提取和并行计算;步骤四、将特征存储;步骤五、过滤不关心用户;步骤六、计算用户影响力;步骤七、存储每日每个用户的影响力。优点在于:该影响力的指标增加了平均数、最高数和爆发度,平均数要求用户发布的每条微博的平均影响力都比较高,避免出现微博数大造成转发量或评论量大,最高数和爆发度分别刻画影响力传播的范围和速度,因此,新增加的指标克服以往指标中存在单一总数不能完整刻画用户影响力的缺陷,能够更深入的解释用户影响力高的原因。

    一种针对千万级规模新闻评论的观点挖掘方法

    公开(公告)号:CN104778209A

    公开(公告)日:2015-07-15

    申请号:CN201510111752.X

    申请日:2015-03-13

    Abstract: 本发明公开了一种针对千万级规模新闻评论的观点挖掘方法。具体步骤如下:1)、统计千万级规模新闻评论的数量;2)、判断该数量是否大于或等于阈值K,如果是不予处理,否则进入步骤三;3)、利用中文分词工具,对数量小于阈值K的新闻标题和评论进行分词,进行词性标注;4)、根据分词结果对新闻评论聚类,得到类别标签;5)、对新闻评论进行关键词对提取;6)、统计新闻评论的比例和混杂度;7)、根据关键词对筛选并提取代表性文本。本发明利用中文分词工具,考虑汉语语言的用法和搭配关系,结合新闻标题的作用,处理千万级规模的新闻评论,具有高效性、鲁棒性和易用性等优点。

Patent Agency Ranking