-
公开(公告)号:CN108623251A
公开(公告)日:2018-10-09
申请号:CN201810365328.1
申请日:2018-04-23
Applicant: 东南大学
IPC: C04B28/04 , C04B111/24 , C04B111/27 , C04B111/74
CPC classification number: C04B28/04 , C04B2111/00293 , C04B2111/24 , C04B2111/27 , C04B2111/74 , C04B2201/50 , C04B18/08 , C04B18/146 , C04B14/06 , C04B14/48 , C04B2103/302 , C04B2103/0068
Abstract: 本发明公开了一种用于深海环境的超高性能混凝土及其制备方法,该超高性能混凝土的主要组成为:普通硅酸盐水泥573-596份,精细沉珠286-298份,硅灰95-100份,河砂1050-1093份,膨胀剂28-30份,钢纤维190-200份,减水剂18-20份,水155-195份。本发明所得超高性能混凝土可以在深海高压、低温及侵蚀性环境下发挥着优良的力学性能和耐久性,相较于普通混凝土更加安全可靠,安全服役寿命更长。
-
公开(公告)号:CN108535292A
公开(公告)日:2018-09-14
申请号:CN201810262090.X
申请日:2018-03-28
Applicant: 东南大学
IPC: G01N23/046
Abstract: 本发明公开一种高铁路基填料中细粒土掺量上限的确定方法,包括如下步骤:(1)制备不同细粒土含量的填料样品;(2)进行室内冻胀试验,测得各填料样品的冻胀率;(3)对各填料样品进行X射线层析扫描,采用图像处理算法统计分析各填料样品中细粒土分布的连通区域和计盒分形维数,分别与细粒土含量建立函数关系;(4)综合分析连通区域、计盒分形维数随细粒土含量的变化趋势以及不同细粒土含量对应的冻胀率,确定路基填料中细粒土的最大掺量。本发明考虑了细粒土填料分布及微观孔隙分布的影响,采用孔隙结构微观分析方法及图像处理方法,能够准确地得出满足非冻胀填料要求的细粒掺量上限,从而可开发出优异耐久性的高铁路基用填料。
-
公开(公告)号:CN104792626B
公开(公告)日:2018-07-20
申请号:CN201510190662.4
申请日:2015-04-21
Applicant: 东南大学
IPC: G01N3/18
Abstract: 本发明提供了一种拉伸应力与环境耦合作用下FRP筋耐久性能实验装置,包括下拉板(1)、定位板(7)、设于下拉板(1)和定位板(7)之间的上拉板(2)、穿过上拉板(2)并利用定位螺帽(4)设置于下拉板(1)和定位板(7)之间的4根拉杆(3)、带有螺纹杆的万向球铰(8)、装样套管(10)、玻璃管(13)、温度控制器(15);所述上拉板(2)底部设有加力螺帽(5),所述上拉板(2)和定位板(7)之间设有弹簧(6);所述下拉板(1)、上拉板(2)的中部分别设有开孔,一对带有螺纹杆的万向球铰(8)分别穿过下拉板(1)、上拉板(2)的中部开孔与装样套管(10)连接;万向球铰(8)与下拉板(1)之间设有应力传感器(9),应力传感器(9)与数据采集器(16)连接;所述玻璃管(13)与温度控制器(15)连接。该装置精准度高,应力水平可调,长期施加荷载过程中应力分布均匀,连续性好,温度控制方便,可靠性高。
-
公开(公告)号:CN119939334A
公开(公告)日:2025-05-06
申请号:CN202411965393.X
申请日:2024-12-30
Applicant: 东南大学
IPC: G06F18/241 , G06F18/27 , G06F18/10 , G06F18/214 , G06N3/09
Abstract: 本发明属于阻锈剂性能预测领域,具体涉及一种基于官能团分类和机器学习的钢筋阻锈剂性能预测方法,首先对阻锈剂分子结构中活性基团和官能团进行科学分类与数据采集,并采集浸泡时间、阻锈剂含量、转移电阻与阻锈效率等阻锈剂高度相关的指标数据,形成原始数据特征集;其次对采集到的原始数据进行预处理;然后基于重要性排序识别影响阻锈效率的关键官能团与环境条件特征;最后利用训练集对机器学习回归模型进行训练,通过测试集的误差指标评估模型性能,得到可预测不同阻锈剂分子结构下阻锈效率的预测模型。该方法具有预测准确度高、可解释性强、可拓展性好的优点,为钢筋阻锈剂的研发、筛选与应用提供了高效的技术支持。
-
公开(公告)号:CN119528527B
公开(公告)日:2025-03-25
申请号:CN202510093148.2
申请日:2025-01-21
IPC: C04B28/06 , C04B24/26 , C04B111/74
Abstract: 本发明属于水下施工材料技术领域,具体涉及一种自流平抗分散水下封底材料及其制备方法。本发明的自流平抗分散水下封底材料包括下述重量份的组分:硫铝酸盐水泥530~730份、普通硅酸盐水泥77~277份、粉煤灰84~126份、细骨料870~950份、水250~278份、减水剂18~23份、絮凝剂6~10份、缓凝剂8~12份、消泡剂0.9~1.4份和早强剂0.1~0.4份。本发明的自流平抗分散水下封底材料具有良好的流动性和抗分散性。
-
公开(公告)号:CN119528527A
公开(公告)日:2025-02-28
申请号:CN202510093148.2
申请日:2025-01-21
IPC: C04B28/06 , C04B24/26 , C04B111/74
Abstract: 本发明属于水下施工材料技术领域,具体涉及一种自流平抗分散水下封底材料及其制备方法。本发明的自流平抗分散水下封底材料包括下述重量份的组分:硫铝酸盐水泥530~730份、普通硅酸盐水泥77~277份、粉煤灰84~126份、细骨料870~950份、水250~278份、减水剂18~23份、絮凝剂6~10份、缓凝剂8~12份、消泡剂0.9~1.4份和早强剂0.1~0.4份。本发明的自流平抗分散水下封底材料具有良好的流动性和抗分散性。
-
公开(公告)号:CN119430735A
公开(公告)日:2025-02-14
申请号:CN202411413501.2
申请日:2024-10-11
Applicant: 东南大学
IPC: C04B24/42 , C04B28/04 , C04B111/20 , C04B103/30
Abstract: 本发明提供一种适用于高原低气压地区的固体引气剂及其制备方法和应用。本发明的适用于高原低气压地区的固体引气剂的制备方法,包括下述步骤:(1)对橡胶粉集料进行清洗;(2)将所述橡胶粉集料与碳纳米管和纳米氧化锌混合均匀,得到固体混合物;(3)将所述固体混合物与改性溶液混合得到混合料;(4)对所述混合料进行超声处理,并在超声结束后机械搅拌,固液分离,干燥,得到改性橡胶粉集料;(5)对所述改性橡胶粉集料进行热处理,即得所述适用于高原低气压地区的固体引气剂。本发明的适用于高原低气压地区的固体引气剂应用于混凝土中,可使混凝土具有优异的抗冻性能,能够显著提高高原低气压地区混凝土结构的使用寿命并降低维护成本。
-
公开(公告)号:CN118812220A
公开(公告)日:2024-10-22
申请号:CN202410809932.4
申请日:2024-06-21
Applicant: 东南大学 , 中国国家铁路集团有限公司
IPC: C04B28/06 , C04B18/12 , C04B40/00 , C04B111/20 , C04B111/34
Abstract: 本发明提供一种抗裂耐久洞渣骨料混凝土,包括以下比例的原料:硫铝酸盐水泥750~810份、硅灰120~180份、膨胀剂18~28份、聚丙烯纤维50~70份、洞渣粗骨料2100~2300份、洞渣细骨料1500~1600份、聚羧酸减水剂22~28份、水300~330份.本发明通过将聚羧酸减水剂加入水中,搅拌得到均匀的水溶剂,缓慢加入到均匀混合料中,然后调节旋转式混合搅拌机的工作参数进行混合,得到均匀混合浆体,最后按国家标准成型养护,即可得到所述抗裂耐久洞渣骨料混凝土。本发明原料采用隧道洞渣作为粗细骨料,制备绿色生态混凝土,减少了天然骨料的开发,降低了工程成本,同时通过改善内部结构,制备具有良好的力学性能以及耐久性能的洞渣骨料混凝土。
-
公开(公告)号:CN118420294B
公开(公告)日:2024-08-27
申请号:CN202410855087.4
申请日:2024-06-28
Abstract: 本发明涉及水泥基建筑材料技术领域,尤其是涉及一种高导热低温升大体积混凝土及其制备方法,利用封装型相变材料为出发点,并进行改性,制备高导热储能相变粗骨料,并采用水泥、稻壳灰、高导热储能相变粗骨料、细骨料、减水剂、钢纤维、水作为原料制备大体积混凝土,降低混凝土内部温升,实现混凝土内部温升与导热系数的有效改善。
-
公开(公告)号:CN118335239A
公开(公告)日:2024-07-12
申请号:CN202410426168.2
申请日:2024-04-10
Applicant: 东南大学
Abstract: 本发明公开了一种基于多元非线性回归分析的混凝土性能预测方法,包括以下步骤:采用正交策略获取不同条件参数组合下的混凝土性能真实标注数据集;明确建立回归方程的类型,并基于前述数据集利用最小二乘法对回归模型中的参数进行求解;基于前述数据集和额外的数据集分别对回归模型的准确性进行检验;利用已验证的回归模型对不同参数的混凝土性能进行预测。结果表明:该性能预测方法可基于少量真实数据建立优异的回归预测模型,并实现不同参数混凝土性能的快速和精准预测。
-
-
-
-
-
-
-
-
-