基于超声图像识别血管中斑块的方法

    公开(公告)号:CN113222956A

    公开(公告)日:2021-08-06

    申请号:CN202110570605.4

    申请日:2021-05-25

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于超声图像识别血管中斑块的方法,具体步骤包括:选取包含颈动脉部位的超声灰度图像;将疑似血流区域提取出来;将提取出的图像设置一定透明度后与原先的图像叠加合成新图;在合成的新图上使用最大类间方差算法(OTSU)和snake算法算出血管内膜边界;将每条内膜边界划分为若干小段,将每一小段拟合成一条直线;取出小段上的每一个点到其拟合直线上的距离,进行累加并得到距离总值;设置距离总值的阈值,留下小于阈值的小段;对小段进行拟合,得到一条光滑的曲线;将光滑曲线图和开始寻找到的内膜图叠加,相邻的Y轴坐标相减,设置阈值,大于阈值部分认为是斑块;得到血管斑块。本发明提供的方法能够精确识别斑块。

    一种构造弯曲驻波操控粒子沿弯曲轨迹运动的方法

    公开(公告)号:CN106934234B

    公开(公告)日:2021-05-07

    申请号:CN201710136661.0

    申请日:2017-03-09

    Applicant: 南京大学

    Abstract: 本发明公开了一种构造弯曲驻波操控粒子沿弯曲轨迹运动的方法,属于声辐射力应用领域。本发明通过不规则栅格结构生成两束弯曲的半贝塞尔束,调节其无衍射性使其在空间上形成弯曲的驻波场,利用驻波场所形成的势阱的声辐射力,操控粒子沿着驻波的曲线轨迹运动。利用驻波形成的力学势阱来操控粒子,具有操控稳定等优点。相比于传统的使用一对相向的换能器激发驻波场操控粒子的方法,本发明中换能器放置在同一侧,提高了操控粒子的便利性,扩大了粒子的操控范围,同时实现了在自由空间,操控粒子沿曲线轨迹运动,扩展了粒子操控的维度。

    超声多点聚焦发射的透皮给药装置及控制方法

    公开(公告)号:CN112023244A

    公开(公告)日:2020-12-04

    申请号:CN202010965436.X

    申请日:2020-09-15

    Applicant: 南京大学

    Abstract: 本发明公开了一种超声多聚焦发射的透皮给药装置及控制方法,所述给药装置包括超声主机和换能器阵列,超声主机控制换能器阵列发射超声波,换能器阵列的聚焦方式通过相位调制实现;所述控制方法包括自动进行多点聚焦发射和自动逐条移动给药发射声束,采用多点聚焦发射可在透皮给药的通路上形成连续的垂直向深度方向的较强声场,从而给药物粒子连续的推动力,有利于其到达皮下较深的病灶处,可以更好地进行药物地渗透。

    联合成像与循环聚焦发射透皮给药的超声装置及控制方法

    公开(公告)号:CN112022206A

    公开(公告)日:2020-12-04

    申请号:CN202010964847.7

    申请日:2020-09-15

    Applicant: 南京大学

    Abstract: 本发明公开了一种联合成像与循环聚焦发射透皮给药的超声装置,其包括超声主机和集成有成像与治疗功能一体化的超声换能器阵列,超声换能器阵列用于将电信号转换为声信号,以及将声信号转换为电信号,并可依据不同的信号波形、幅度、相位,发射出不同的超声场和产生不同的接收效果,超声主机用于驱动超声换能器阵列完成成像所需的发射与接收,以及完成透皮给药所需的发射,进而实现超声循环聚焦发射,形成一个从浅到深的超声聚焦通道;所述控制方法采用循环聚焦发射,可在透皮给药的通路上形成连续的垂直向深度方向的较强声场,从而给药物粒子连续的推动力,有利于其到达皮下较深的病灶处,更好地进行药物地渗透。

    一种基于非线性热膨胀评估温度变化的超声方法及系统

    公开(公告)号:CN111272305A

    公开(公告)日:2020-06-12

    申请号:CN202010059747.X

    申请日:2020-01-19

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于非线性热膨胀评估温度变化的超声方法及系统,属于超声检测领域,其针对目前各种基于对体内组织加热的方式治疗疾病的方法中无法有效监测靶区温升的问题,建立了利用B超原始回波信号评估生物组织温度变化的方法。该方法对生物组织利用聚焦超声、射频、微波等方法进行局部加热,用B型超声对靶区进行成像并收集其原始回波信号,基于B超时序图像,利用动态选帧算法选取目标帧对活体噪声进行抑制,并计算超声经过组织时的时间延迟图像;进而根据热膨胀和声速的非线性模型由此得到温度变化图像;本方法在温升30℃范围内误差不超过3℃,其将推动B超的温升监控技术在热疗中的应用,可显著提高热疗的安全性和有效性。

    一种基于B超信号评估呼吸和心动周期的方法

    公开(公告)号:CN110931130A

    公开(公告)日:2020-03-27

    申请号:CN201911391640.9

    申请日:2019-12-30

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于B超信号评估呼吸和心动周期的方法,属于医学图像处理领域。针对现有技术中存在的现有的常规呼吸和心跳监控相互独立进行,实施方式复杂的问题,本发明提供了一种基于B超信号评估呼吸和心动周期的方法,利用B超对动物腹部或胸腔成像并采集时序图像信号,计算不同参考帧和目标帧之间的互相关系数-时间变化曲线,它可以实现常规呼吸和心跳监控,也可用于基于B超的生理门控应用,还可以用于B超图像处理、超声测温、超声弹性成像等问题中的生理运动补偿,对呼吸和心动周期的判断具有准确性高、易实施等特点。

    一种构造弯曲驻波操控粒子沿弯曲轨迹运动的方法

    公开(公告)号:CN106934234A

    公开(公告)日:2017-07-07

    申请号:CN201710136661.0

    申请日:2017-03-09

    Applicant: 南京大学

    CPC classification number: G06F19/00

    Abstract: 本发明公开了一种构造弯曲驻波操控粒子沿弯曲轨迹运动的方法,属于声辐射力应用领域。本发明通过不规则栅格结构生成两束弯曲的半贝塞尔束,调节其无衍射性使其在空间上形成弯曲的驻波场,利用驻波场所形成的势阱的声辐射力,操控粒子沿着驻波的曲线轨迹运动。利用驻波形成的力学势阱来操控粒子,具有操控稳定等优点。相比于传统的使用一对相向的换能器激发驻波场操控粒子的方法,本发明中换能器放置在同一侧,提高了操控粒子的便利性,扩大了粒子的操控范围,同时实现了在自由空间,操控粒子沿曲线轨迹运动,扩展了粒子操控的维度。

    一种超声造影剂微气泡的包膜粘弹特性定量表征方法

    公开(公告)号:CN105067432A

    公开(公告)日:2015-11-18

    申请号:CN201510430285.7

    申请日:2015-07-21

    Applicant: 南京大学

    Abstract: 本发明公开了一种超声造影剂微气泡的包膜粘弹特性定量表征方法,针对传统的动力学模型拟合中弹性系数和粘性系数存在不确定因素,拟合得到的包膜参数准确性差等问题,采用原子力显微镜技术测量包膜微气泡的力学特性,根据微气泡包膜的力学特性曲线计算得到微气泡的体弹性模量;采用超声测量技术进行超声造影剂微气泡的衰减测量,进而结合微气泡动力学理论,精确计算出包膜微气泡的体粘度系数。本发明将传统的多参数动力学模型拟合转换为单参数动力学模型拟合,有效消除了弹性系数和粘性系数两者的相互影响,提高了微气泡粘弹特性评估的准确性和精确度,该方法对超声造影剂的制备及其诊断和治疗应用有积极意义。

    一种能够产生超宽带弯曲声场的声学材料

    公开(公告)号:CN104916280A

    公开(公告)日:2015-09-16

    申请号:CN201510176184.1

    申请日:2015-04-14

    Applicant: 南京大学

    Abstract: 本发明公开了一种能够产生超宽带弯曲声场的声学材料,所述声学材料的表面上设置有依次排列的不同深度的槽,所述槽的宽度d均相同,其中,λ>2d,λ为声波的波长,相邻所述槽之间的距离为d0,其中,d≥3d0,建立x轴,所述x轴平行于所述表面并与所述槽垂直,其中,槽的深度为h(x),其中,槽的深度由下式h(x)表示:本发明的能够产生超宽带弯曲声场的声学材料结构简单,容易实现,可以产生超宽带弯曲声场。

    一种能够使超宽带声波重定向的声学材料

    公开(公告)号:CN104751841A

    公开(公告)日:2015-07-01

    申请号:CN201510174928.6

    申请日:2015-04-14

    Applicant: 南京大学

    Abstract: 本发明公开了一种能够使超宽带声波重定向的声学材料,所述声学材料的表面上设置有依次排列的不同深度的槽,所述槽的宽度d均相同,其中,λ>2d,λ为声波的波长,相邻所述槽之间的距离为d0,其中,d≥3d0,建立x轴,所述x轴平行于所述表面并与所述槽垂直,其中,槽的深度为h(x),其中,槽的深度由下式h(x)表示:本发明的能够使超宽带声波重定向的声学材料结构简单,容易实现,只需要一个声源入射就可以实现超宽带声波重定向。

Patent Agency Ranking