-
公开(公告)号:CN111612809B
公开(公告)日:2023-04-07
申请号:CN202010466649.8
申请日:2020-05-28
Applicant: 华侨大学 , 泉州市中仿宏业信息科技有限公司
IPC: G06T7/20 , G06F17/16 , G06T7/246 , G06V10/25 , G06V10/774
Abstract: 本发明提供了视觉跟踪领域的一种结合时空正则化约束的视觉跟踪定位方法,包括如下步骤:步骤S10、对参数进行初始化;步骤S20、基于初始化的所述参数,利用脊回归项、时空正则化模块以及约束模块建立跟踪框的目标函数;步骤S30、将所述目标函数矩阵化;步骤S40、将矩阵化的所述目标函数转为频域函数;步骤S50、将所述频域函数最小化以求取最优解;步骤S60、利用所述最优解更新拉格朗日参数;步骤S70、基于更新的所述拉格朗日参数更新跟踪框的目标函数进行视觉跟踪。本发明的优点在于:极大的提升了视觉跟踪的准确性以及有效性。
-
公开(公告)号:CN110136112B
公开(公告)日:2022-11-04
申请号:CN201910397979.3
申请日:2019-05-14
Applicant: 华侨大学 , 泉州市中仿宏业信息科技有限公司
IPC: G06T7/00 , G06T7/11 , G06T7/13 , G06V10/764
Abstract: 本发明提供了一种基于乳腺X线摄影钙化计算机辅助检测算法,包括以下步骤:读入图像、预处理、图像滤波、图像均衡化、图像分割、灰度还原、LBP和GLDM纹理特征和随机森林算法分类;本发明通过图像处理的方法既可以提高乳腺钙化的检测率,精确地表示出乳腺钙化的方位信息,提高了乳腺钙化检测的精确度,本发明可用于从乳腺钼靶靶线图像中快速地检测出可疑钙化区域,通过计算机图像处理的方法,将可疑钙化区域标示出来供参考,为最后良恶性判别诊断提供有益信息。
-
公开(公告)号:CN109063535B
公开(公告)日:2021-09-28
申请号:CN201810541294.7
申请日:2018-05-30
Applicant: 华侨大学
Abstract: 本发明涉及一种基于联合深度学习的行人再辨识和行人性别分类方法,可同时预测行人身份和行人性别。首先,构建两个结构相同的深度网络,分别用于行人再辨识和行人性别分类;其次,利用参数相关正则项约束两个结构相同的深度网络中各层的参数集,使得二者参数的优化过程中不至于发生过大的偏离,以避免过拟合,从而同时提升行人再辨识与行人性别分类的准确率。
-
公开(公告)号:CN111583227A
公开(公告)日:2020-08-25
申请号:CN202010382639.6
申请日:2020-05-08
Applicant: 华侨大学 , 泉州市华工智能技术有限公司
Abstract: 本发明提供一种荧光细胞自动计数方法、装置、设备和介质,方法包括步骤S1、读取荧光细胞的显微图像;步骤S2、对荧光细胞的显微图像进行预处理,包括校正显微图像不均匀光照,增强显微图像中细胞与背景的对比度;采用中值滤波滤除显微图像噪声,保留图像边缘的细节信息;采用开运算去除显微图像噪声和背景杂质,平滑细胞的轮廓、断开细胞狭窄的连接和去掉细胞细小的突出部分;步骤S3、对显微图像上粘连的荧光细胞进行分割,避免细胞计数时将粘连的细胞群当成一个细胞;步骤S4、计算荧光细胞的数目。本发明可以从效率、准确率以及成本上满足大部分实验室的需求。
-
公开(公告)号:CN111008996A
公开(公告)日:2020-04-14
申请号:CN201911250349.X
申请日:2019-12-09
Applicant: 华侨大学 , 泉州市中仿宏业信息科技有限公司
Abstract: 本发明公开一种通过分层特征响应融合的目标跟踪方法,涉及计算机视觉目标跟踪领域;包括:步骤10、对参数进行初始化;步骤20、提取目标图像分层特征进行响应值融合得到位置模型;步骤30、训练尺度相关滤波器的最大尺度响应值得到尺度模型;步骤40、当步骤20中所述响应值融合后得到的融合响应值小于等于设定阈值,对目标图像进行重检测,得到一候选区域,并返回步骤20;当所述融合响应值大于设定阈值时,更新位置模型以及尺度模型,然后进入步骤50;步骤50、将更新后的位置模型与尺度模型用于下一帧跟踪,返回步骤40。本发明提供的方法,改变了分层特征自适应融合和模型更新的条件,提高了相关滤波器跟踪的精确度,使跟踪效果更为理想。
-
公开(公告)号:CN110516569A
公开(公告)日:2019-11-29
申请号:CN201910753998.5
申请日:2019-08-15
Applicant: 华侨大学 , 厦门市公安局思明分局 , 中国人民公安大学
Abstract: 本发明提供一种基于身份和非身份属性交互学习的行人属性识别方法。首先,采用一种具有视角变化鲁棒性的特征学习方法对行人图像进行特征表达;其次,将行人属性分为身份属性和非身份属性,对二者之间的潜在关系进行建模,设计出行人身份属性和非身份属性交互学习的目标函数,利用身份属性的识别优势促进非身份属性识别率的提高,并且利用非身份属性识别率的提高反过来进一步改进身份属性的识别效果。行人属性分为身份属性和非身份属性的潜在关系为:相同身份的行人之间,必然具有相同的非身份属性;非身份属性差异大的行人之间,其身份属性差异一般较大。最后,采用mini-batch随机梯度下降算法对目标函数进行优化,实现行人属性的识别。
-
公开(公告)号:CN109063535A
公开(公告)日:2018-12-21
申请号:CN201810541294.7
申请日:2018-05-30
Applicant: 华侨大学
CPC classification number: G06K9/00362 , G06K9/6267
Abstract: 本发明涉及一种基于联合深度学习的行人再辨识和行人性别分类方法,可同时预测行人身份和行人性别。首先,构建两个结构相同的深度网络,分别用于行人再辨识和行人性别分类;其次,利用参数相关正则项约束两个结构相同的深度网络中各层的参数集,使得二者参数的优化过程中不至于发生过大的偏离,以避免过拟合,从而同时提升行人再辨识与行人性别分类的准确率。
-
公开(公告)号:CN113380401B
公开(公告)日:2025-03-14
申请号:CN202110788927.6
申请日:2021-07-13
Applicant: 华侨大学
IPC: G16H50/20 , G06V10/764 , G06V10/50
Abstract: 本发明提供一种基于超声图像的乳腺肿瘤良恶性分类方法、装置和介质,该方法包括:对带有分类标签的原始乳腺肿瘤超声图像进行预处理,得到预处理图像;获取预处理图像中感兴趣区域;对感兴趣区域做三种处理分别得到深度残差网络特征向量、纹理特征向量和形态特征向量;将深度残差网络特征向量和纹理特征向量分别进行降维处理,然后将二者进行特征融合,得到融合向量数据;利用支持向量机分类器对一定数量的融合向量数据进行学习,并利用朴素贝叶斯分类器对形态特征向量进行学习,通过加权两种分类器得到肿瘤分类模型;将待分类乳腺肿瘤超声图像输入乳腺肿瘤分类模型,得到分类结果。采用本发明方法可实现更准确地对乳腺肿瘤超声图像的自动分类。
-
公开(公告)号:CN119232941B
公开(公告)日:2025-02-25
申请号:CN202411716269.X
申请日:2024-11-27
Applicant: 华侨大学
IPC: H04N19/172 , H04N19/70 , H04N19/85 , H04N19/134 , H04N19/42 , G06V20/40 , G06N3/0464 , G06N3/08 , G06T7/254 , G06V10/80
Abstract: 本发明公开了一种基于深度学习的双目视频压缩方法、装置及可读介质,涉及视频处理领域,包括:构建双目视频压缩模型并训练,得到经训练的双目视频压缩模型,分别获取待压缩的双目视频中的左视点的当前时刻的原始帧和前一时刻的原始帧以及右视点的当前时刻的原始帧和前一时刻的原始帧并输入到经训练的双目视频压缩模型,通过迭代的方式重构得到左视点的重建帧序列和右视点的重建帧序列,并得到压缩后的双目视频。本发明解决了现有的双目视频的视点间的冗余利用率低、压缩性能低的问题。
-
公开(公告)号:CN119232941A
公开(公告)日:2024-12-31
申请号:CN202411716269.X
申请日:2024-11-27
Applicant: 华侨大学
IPC: H04N19/172 , H04N19/70 , H04N19/85 , H04N19/134 , H04N19/42 , G06V20/40 , G06N3/0464 , G06N3/08 , G06T7/254 , G06V10/80
Abstract: 本发明公开了一种基于深度学习的双目视频压缩方法、装置及可读介质,涉及视频处理领域,包括:构建双目视频压缩模型并训练,得到经训练的双目视频压缩模型,分别获取待压缩的双目视频中的左视点的当前时刻的原始帧和前一时刻的原始帧以及右视点的当前时刻的原始帧和前一时刻的原始帧并输入到经训练的双目视频压缩模型,通过迭代的方式重构得到左视点的重建帧序列和右视点的重建帧序列,并得到压缩后的双目视频。本发明解决了现有的双目视频的视点间的冗余利用率低、压缩性能低的问题。
-
-
-
-
-
-
-
-
-