-
公开(公告)号:CN111008996A
公开(公告)日:2020-04-14
申请号:CN201911250349.X
申请日:2019-12-09
Applicant: 华侨大学 , 泉州市中仿宏业信息科技有限公司
Abstract: 本发明公开一种通过分层特征响应融合的目标跟踪方法,涉及计算机视觉目标跟踪领域;包括:步骤10、对参数进行初始化;步骤20、提取目标图像分层特征进行响应值融合得到位置模型;步骤30、训练尺度相关滤波器的最大尺度响应值得到尺度模型;步骤40、当步骤20中所述响应值融合后得到的融合响应值小于等于设定阈值,对目标图像进行重检测,得到一候选区域,并返回步骤20;当所述融合响应值大于设定阈值时,更新位置模型以及尺度模型,然后进入步骤50;步骤50、将更新后的位置模型与尺度模型用于下一帧跟踪,返回步骤40。本发明提供的方法,改变了分层特征自适应融合和模型更新的条件,提高了相关滤波器跟踪的精确度,使跟踪效果更为理想。
-
公开(公告)号:CN111008996B
公开(公告)日:2023-04-07
申请号:CN201911250349.X
申请日:2019-12-09
Applicant: 华侨大学 , 泉州市中仿宏业信息科技有限公司
Abstract: 本发明公开一种通过分层特征响应融合的目标跟踪方法,涉及计算机视觉目标跟踪领域;包括:步骤10、对参数进行初始化;步骤20、提取目标图像分层特征进行响应值融合得到位置模型;步骤30、训练尺度相关滤波器的最大尺度响应值得到尺度模型;步骤40、当步骤20中所述响应值融合后得到的融合响应值小于等于设定阈值,对目标图像进行重检测,得到一候选区域,并返回步骤20;当所述融合响应值大于设定阈值时,更新位置模型以及尺度模型,然后进入步骤50;步骤50、将更新后的位置模型与尺度模型用于下一帧跟踪,返回步骤40。本发明提供的方法,改变了分层特征自适应融合和模型更新的条件,提高了相关滤波器跟踪的精确度,使跟踪效果更为理想。
-
公开(公告)号:CN111428713A
公开(公告)日:2020-07-17
申请号:CN202010199592.X
申请日:2020-03-20
Applicant: 华侨大学 , 福建医科大学附属第二医院 , 泉州市华工智能技术有限公司
Abstract: 本发明提供了超声图像分类领域的一种基于特征融合的超声图像自动分类法,包括如下步骤:步骤S10、获取超声图像,对所述超声图像进行预处理并生成标准切面;步骤S20、提取所述标准切面中的图像特征;步骤S30、对所述图像特征进行归一化处理,得到特征向量;步骤S40、基于所述特征向量,利用SVM分类器对所述标准切面进行学习和分类。本发明的优点在于:极大的提升了超声图像标准切面分类的精度以及效率。
-
公开(公告)号:CN111428713B
公开(公告)日:2023-04-07
申请号:CN202010199592.X
申请日:2020-03-20
Applicant: 华侨大学 , 福建医科大学附属第二医院 , 泉州市华工智能技术有限公司
IPC: G06V10/25 , G06V10/764 , G06V10/774 , G06T5/00 , G06T5/50 , G06T7/40 , G06T7/62
Abstract: 本发明提供了超声图像分类领域的一种基于特征融合的超声图像自动分类法,包括如下步骤:步骤S10、获取超声图像,对所述超声图像进行预处理并生成标准切面;步骤S20、提取所述标准切面中的图像特征;步骤S30、对所述图像特征进行归一化处理,得到特征向量;步骤S40、基于所述特征向量,利用SVM分类器对所述标准切面进行学习和分类。本发明的优点在于:极大的提升了超声图像标准切面分类的精度以及效率。
-
-
-