一种基于非赫尔米特增强拓扑保护的混沌光源系统

    公开(公告)号:CN115718394B

    公开(公告)日:2023-08-18

    申请号:CN202211097630.6

    申请日:2022-09-08

    Applicant: 暨南大学

    Abstract: 本发明涉及一种基于非赫尔米特增强拓扑保护的混沌光源系统,包括光子零能模式产生模块和声子模式激发模块;所述光子零能模式产生模块,用于产生零能模式;所述声子模式激发模块,用于与所述零能模式非线性相互作用并产生声子,利用所述非线性相互作用的强度高于混沌光激发阈值,从而产生混沌光源。本发明利用光子零能模式,针对现有技术中光学芯片上混沌光源信号稳定性弱的不足,实现高稳定性的光学芯片混沌光源。本发明结构简单、稳定性强,能降低光学芯片系统研制的成本。

    一种超声辅助的图案化透明导电电极制备方法

    公开(公告)号:CN111710476B

    公开(公告)日:2021-04-16

    申请号:CN202010619784.1

    申请日:2020-06-30

    Applicant: 暨南大学

    Abstract: 本发明涉及图案化制备透明导电电极技术领域,更具体地,涉及一种超声辅助的图案化透明导电电极制备方法。一种超声辅助的图案化透明导电电极制备方法,依次包括如下步骤:S1配置交联剂:配置水溶性光聚合交联剂;S2涂布成膜:按一定比例混合水溶性光聚合交联剂和金属纳米线分散液后涂布在衬底表面;S3选择性曝光:对待图案化的导电电极进行选择性曝光,得到曝光的导电电极;S4超声清洗:在极性溶剂中对曝光的导电电极进行超声清洗,干燥得到图案化透明导电电极。本发明超声辅助的图案化透明导电电极制备方法不仅工艺简单、效率高、成本低;而且超声清洗过程中使用的原料对人体和环境友好,是一种新型的图案化透明导电电极制备方法。

    一种消影的图案化透明导电电极制备方法

    公开(公告)号:CN111710475B

    公开(公告)日:2020-12-29

    申请号:CN202010618299.2

    申请日:2020-06-30

    Applicant: 暨南大学

    Abstract: 本发明涉及一种消影的图案化透明导电电极制备方法,具体包括以下步骤:S1在衬底上沉积金属纳米线,形成金属纳米线交联网络层;S2采用巯基化合物对金属纳米线交联网络进行选择性修饰,改变金属纳米线交联网络层部分区域的热稳定性,在修饰与未修饰区域之间形成热稳定性差异,得到结构化修饰的交联网络层;S3对结构化修饰的交联网络层进行加热,在金属纳米线交联网络层热稳定性差的部位得到绝缘区域,在金属纳米线交联网络层热稳定性好的部位得到导电区域,形成消影的图案化透明导电电极。本方法制备的图案化导电电极图案与非图案区域的光学性能差异小,具备消影的特点,能满足实际应用中不可视透明电极的需求。

    一种等离子体传感器的设计方法及其制备的传感器

    公开(公告)号:CN111175234A

    公开(公告)日:2020-05-19

    申请号:CN202010005891.5

    申请日:2020-01-03

    Applicant: 暨南大学

    Abstract: 本发明公开的一种等离子体传感器的设计方法及其制备的传感器,先利用软件仿真计算获取双曲超材料的金属填充比ρ和金属-电介质层的对数Nbi的最佳组合参数,再将双曲超材料以最佳组合参数的多层膜结构与Kretschmann结构或侧边抛磨光纤的抛磨面结合制成对应的等离子体传感器。与现有技术相比,其有效果在于:本发明提供的设计方法能够通过对双曲超材料的金属填充比(ρ)和金属-电介质层的对数(Nbi)的调控,控制传感器的性能参数,实现性能参数的可控性;用该方法制备的等离子体传感器具有波长可调节、高灵敏度、高品质因素(FOM)、制造简单等优点,远胜于现在已有的等离子体传感器。

    一种基于移动终端的便携式矢量磁场传感装置及其检测方法

    公开(公告)号:CN109597003A

    公开(公告)日:2019-04-09

    申请号:CN201811600763.4

    申请日:2018-12-26

    Applicant: 暨南大学

    Abstract: 本发明涉及磁场传感器技术领域,具体公开了一种基于移动终端的便携式矢量磁场传感装置,包括传感单元、移动终端装置以及可与移动终端装置连接的附件装置;所述传感单元用于感应外界矢量磁场的变化,包括侧边抛磨光纤和围绕在侧抛光纤周围的磁流体;所述移动终端装置包括用于向传感单元发射光信号的LED,用于捕捉所述传感单元输出的光信号的摄像头,以及用于处理摄像头捕捉到的图像的处理装置。本发明通过设置传感单元感知外界待测磁场的变化,通过移动终端装置发射和接收传给所述传感单元的光信号,设置附件装置将传感单元与所述移动终端装置连接起来,这种装置实现了矢量磁场的精准检测,同时具有体积小、方便携带以及成本低的优势。

    一种二硫化钼增敏的表面等离子体共振传感器及其制备方法

    公开(公告)号:CN109596574A

    公开(公告)日:2019-04-09

    申请号:CN201811602005.6

    申请日:2018-12-26

    Applicant: 暨南大学

    Abstract: 本发明涉及表面等离子体领域,公开了一种二硫化钼增敏的表面等离子体共振(SPR)传感器及其制备方法,所述表面等离子体共振传感器包括侧边抛磨光纤或棱镜、光源以及用于获取光纤或棱镜透射光谱的光谱仪。在侧抛光纤的抛磨区或棱镜表面上镀有贵金属膜,从而激发SPR效应,使得在透射光谱中形成共振吸收谷,而共振吸收谷的位置又受到外界折射率的调制,构成折射率传感器。本发明通过结合二硫化钼和SPR效应,将二硫化钼纳米片沉积在金属膜表面,制备出二硫化钼纳米片增敏的表面等离子体共振传感器,此传感器在折射率范围为1.333~1.360RIU内,可获得高达2793.5nm/RIU的折射率灵敏度,与未修饰二硫化钼的SPR传感器相比,灵敏度提高了30.67%。

    一种基于侧抛光纤表面等离子体共振的矢量磁场传感器及其制备与检测方法

    公开(公告)号:CN109541502A

    公开(公告)日:2019-03-29

    申请号:CN201811600803.5

    申请日:2018-12-26

    Applicant: 暨南大学

    Abstract: 本发明涉及光纤磁场传感器技术领域,具体公开了一种基于侧抛光纤表面等离子体共振的矢量磁场传感器及其制备与检测方法,所述矢量磁场传感器包括侧边抛磨光纤、镀制在抛磨区上的金属薄膜、磁流体、光源以及用于检测透射光谱的光谱仪,所述抛磨光纤是通过光纤抛磨掉部分包层和纤芯制作而成;所述抛磨光纤上设有玻璃毛细管以及光学紫外胶,所述磁流体通过玻璃毛细管以及光学紫外胶密封包裹在抛磨光纤周围。本发明利用表面等离子体共振(SPR)效应,在透射光谱中形成一个共振波谷(透射光强度最低值),在不同磁场强度或磁场方向下,磁流体在金属膜上方的折射率不同,导致SPR共振波谷位置的不同,通过记录共振光谱的漂移情况,即可标定传感器对磁场方向和强度的传感特性。

    一种多通道的光学元件表面颗粒散射测量系统及方法

    公开(公告)号:CN105842202A

    公开(公告)日:2016-08-10

    申请号:CN201610289485.X

    申请日:2016-05-03

    Applicant: 暨南大学

    CPC classification number: G01N21/49 G01N21/958

    Abstract: 本发明公开一种多通道的光学元件表面颗粒散射测量系统,包括置放待测元件的光学平台、光电检测模块、驱动模块、激光器阵列、计算机,所述激光器阵列包括若干路激光器,所述激光器阵列倾斜聚焦照射到放置在光学平台的光学元件的表面上,所述光电检测模块与计算机连接,所述计算机与驱动模块连接,所述驱动模块与激光器阵列连接,所述光电检测模块接收光学元件产生的散射光信号并将之转化为电信号后输入计算机,计算机接收光电检测模块发送的电信号,控制驱动模块带动激光器阵列移动,进行扫描检测,最终在计算机生成一张由检测的散射光信号得到的散射强度分布图,以实现对光学元件表面颗粒的定位,光学元件表面的污染程度分级。

    光波导及幅度调制器
    60.
    实用新型

    公开(公告)号:CN208224650U

    公开(公告)日:2018-12-11

    申请号:CN201721865700.2

    申请日:2017-12-27

    Applicant: 暨南大学

    Abstract: 本实用新型涉及一种光波导及幅度调制器,包括衬底、第一掩膜板、第二掩膜板、波导芯层、第一偏转电极和第二偏转电极。基于cmos工艺的衬底、第一掩膜板和第二掩膜板形成波导槽,波导槽底部的波导芯层用于待调光束,在第一偏转电极和第二偏转电极接入驱动电压后,通过波导芯层与驱动电压的电光效应,改变待调光束的折射率。基于此,有效降低实现光场偏转所需的驱动电压,缩小实现光场偏转所需的器件的尺寸。(ESM)同样的发明创造已同日申请发明专利

Patent Agency Ranking