一种基于异构图注意力神经网络的暗网线索检测方法

    公开(公告)号:CN111737551A

    公开(公告)日:2020-10-02

    申请号:CN202010452949.0

    申请日:2020-05-26

    Abstract: 本发明公开一种基于异构图注意力神经网络的暗网线索检测方法:步骤一、对暗网进行文本采集;步骤二、针对采集到的暗网文本信息,进行事件标题、关键词及实体提取,构建动态异构信息网络;步骤三、对构建的异构信息网络中的节点进行embedding处理,并得到各节点的特征向量;步骤四、对异构信息网络的图结构进行学习;步骤五、根据对异构信息网络的图结构学习得到的结果,对异构信息网络中的节点进行线索类别分类,从而完成对暗网信息的线索检测。本发明利用了外部知识库作为依托,并且采用了两套方法来对构建的异构信息网络的图结构进行学习,具有良好的线索检测效果。

    基于知识图谱的舆情关联分析方法及系统

    公开(公告)号:CN110413784A

    公开(公告)日:2019-11-05

    申请号:CN201910666645.1

    申请日:2019-07-23

    Abstract: 本发明公开了一种基于知识图谱的舆情关联分析方法,包括:提取互联网舆情知识中实体的属性和关系,基于知识图谱构建舆情业务知识库;确定需要关联分析的多个相同或不同类型的实体,采用相交、合并或者消减的方式对多个相同或不同类型的实体进行组合;确定多个相同或不同类型的实体每种组合方式进行关联分析的结果构成,得到分析结果。本发明还提供一种基于知识图谱的舆情关联分析系统。本发明可以实现包括特定人物、特定组织、特定事件、特定专题等在内的相同类型或不同类型知识的关联分析,并实现关联实体的多维度深度分析和关联挖掘,帮助业务用户准确掌握各类不同群体的关联情况,以及关联实体的全方位智能分析结果,进而辅助决策。

Patent Agency Ranking