短文本主题分布的推理方法、系统、计算机设备和存储介质

    公开(公告)号:CN112183108B

    公开(公告)日:2021-06-22

    申请号:CN202010927402.1

    申请日:2020-09-07

    Abstract: 本申请涉及一种短文本主题分布的推理方法、系统、计算机设备和存储介质。该方法包括:抽取单位时间内短文本中出现的共现词对,整合共现词对获取词组集合;根据语义相似度和历史共现度对所述词组集合进行关联,获取词组集合的动态关联度,并以词组矩阵形式存储所述动态关联度;从词组集合中进行主题名称的抽取,并根据所述动态关联度修正所述主题名称;统计修正后的所述短文本中主题名称,获取所述短文本的主题分布。通过设计的动态关联度这一指标,赋予了各个共现词对不同的重要性。此外,该方法中主题名称的提取具有偏向性的主题模型,从而能够抽取出更加连续紧凑的各种主题名称,更加准确的推理出各个短文本的主题分布。

    一种分类模型构建方法、装置、分类模型及分类方法

    公开(公告)号:CN111462817A

    公开(公告)日:2020-07-28

    申请号:CN202010221082.8

    申请日:2020-03-25

    Abstract: 本发明公开了一种分类模型构建方法、装置、分类模型及分类方法。所述分类模型构建方法通过构建初始分类模型,在初始分类模型中引入生成层、选择层和比较层,并通过在基因表达谱训练数据集中随机选择两个样本,对生成层、选择层和比较层进行训练和更新,得到目标分类模型,使得可利用生成层,根据基因表达谱数据中任意两个样本生成新的样本,利用选择层,根据新的样本各个特征的权重选择若干个样本特征,利用比较层,根据从所有样本特征中选择的若干个目标特征对新的样本进行分类。本发明能够构建一种适用于基因表达谱的分类模型,实现增加基因表达谱数据的样本数量,缓解少样本特性带来的欠拟合问题,从而进一步提高基因表达谱数据的分类准确度。

    一种层次化自适应代码生成方法、系统及介质

    公开(公告)号:CN119248289B

    公开(公告)日:2025-05-16

    申请号:CN202411775766.7

    申请日:2024-12-05

    Abstract: 本发明公开了一种层次化自适应代码生成方法、系统及介质,该方法包括:基于代码token类型预测模块分析待生成代码的上下文,识别下一个待生成token的基本类型,所述基本类型包括基本结构、代码逻辑和高级语义内容;基于解码层自适应选择算法,自动选择适当的模型层进行输出预测;利用三种不同的分类解码策略分别生成属于基本结构、代码逻辑和高级语义内容的token。本发明提高了LLMs在代码生成任务中的可靠性,使模型能够更有效地利用其内在各层次的知识,减少了生成代码的结构性或语义性错误,能有效确保生成代码的逻辑性和可执行性。

    基于多任务提示的异常目标识别模型的训练方法和装置

    公开(公告)号:CN119516558A

    公开(公告)日:2025-02-25

    申请号:CN202411673640.9

    申请日:2024-11-21

    Inventor: 廖清 李超洋

    Abstract: 本发明涉及人工智能技术领域,公开了基于多任务提示的异常目标识别模型的训练方法和装置,模型包括:图像编码器、文本编码器、多层感知机和联合调度器;方法包括:获取属于预设识别任务的任务样本的集合;采用图像编码器,根据多任务因果提示和训练图像样本生成视觉提示特征;采用文本编码器,根据多任务因果提示和文本标签样本生成文本提示特征;采用多层感知机过滤视觉提示特征得到反事实视觉提示特征;采用对比学习,根据反事实视觉提示特征和文本提示特征之间以及预设识别类别的相似度确定任务损失;采用联合调度器分配各个任务损失的权重;采用权重和任务损失更新模型的参数,直至训练结束。本公开提高了异常目标识别的泛化性、降低错误率。

    一种层次化自适应代码生成方法、系统及介质

    公开(公告)号:CN119248289A

    公开(公告)日:2025-01-03

    申请号:CN202411775766.7

    申请日:2024-12-05

    Abstract: 本发明公开了一种层次化自适应代码生成方法、系统及介质,该方法包括:基于代码token类型预测模块分析待生成代码的上下文,识别下一个待生成token的基本类型,所述基本类型包括基本结构、代码逻辑和高级语义内容;基于解码层自适应选择算法,自动选择适当的模型层进行输出预测;利用三种不同的分类解码策略分别生成属于基本结构、代码逻辑和高级语义内容的token。本发明提高了LLMs在代码生成任务中的可靠性,使模型能够更有效地利用其内在各层次的知识,减少了生成代码的结构性或语义性错误,能有效确保生成代码的逻辑性和可执行性。

Patent Agency Ranking