-
公开(公告)号:CN112183108B
公开(公告)日:2021-06-22
申请号:CN202010927402.1
申请日:2020-09-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F40/30 , G06F16/36 , G06F16/383
Abstract: 本申请涉及一种短文本主题分布的推理方法、系统、计算机设备和存储介质。该方法包括:抽取单位时间内短文本中出现的共现词对,整合共现词对获取词组集合;根据语义相似度和历史共现度对所述词组集合进行关联,获取词组集合的动态关联度,并以词组矩阵形式存储所述动态关联度;从词组集合中进行主题名称的抽取,并根据所述动态关联度修正所述主题名称;统计修正后的所述短文本中主题名称,获取所述短文本的主题分布。通过设计的动态关联度这一指标,赋予了各个共现词对不同的重要性。此外,该方法中主题名称的提取具有偏向性的主题模型,从而能够抽取出更加连续紧凑的各种主题名称,更加准确的推理出各个短文本的主题分布。
-
公开(公告)号:CN111462817A
公开(公告)日:2020-07-28
申请号:CN202010221082.8
申请日:2020-03-25
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种分类模型构建方法、装置、分类模型及分类方法。所述分类模型构建方法通过构建初始分类模型,在初始分类模型中引入生成层、选择层和比较层,并通过在基因表达谱训练数据集中随机选择两个样本,对生成层、选择层和比较层进行训练和更新,得到目标分类模型,使得可利用生成层,根据基因表达谱数据中任意两个样本生成新的样本,利用选择层,根据新的样本各个特征的权重选择若干个样本特征,利用比较层,根据从所有样本特征中选择的若干个目标特征对新的样本进行分类。本发明能够构建一种适用于基因表达谱的分类模型,实现增加基因表达谱数据的样本数量,缓解少样本特性带来的欠拟合问题,从而进一步提高基因表达谱数据的分类准确度。
-
公开(公告)号:CN119248289B
公开(公告)日:2025-05-16
申请号:CN202411775766.7
申请日:2024-12-05
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F8/41
Abstract: 本发明公开了一种层次化自适应代码生成方法、系统及介质,该方法包括:基于代码token类型预测模块分析待生成代码的上下文,识别下一个待生成token的基本类型,所述基本类型包括基本结构、代码逻辑和高级语义内容;基于解码层自适应选择算法,自动选择适当的模型层进行输出预测;利用三种不同的分类解码策略分别生成属于基本结构、代码逻辑和高级语义内容的token。本发明提高了LLMs在代码生成任务中的可靠性,使模型能够更有效地利用其内在各层次的知识,减少了生成代码的结构性或语义性错误,能有效确保生成代码的逻辑性和可执行性。
-
公开(公告)号:CN119854037A
公开(公告)日:2025-04-18
申请号:CN202510322615.4
申请日:2025-03-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L67/12 , H04L67/2885 , H04L41/0631 , H04L41/14 , H04L41/16 , G06N3/0464 , G06N3/0442
Abstract: 本申请提供一种道路交通网络异常检测方法、装置、电子设备及存储介质,所述方法应用于云边协同交通网络系统,包括:设备层、边缘计算层和云计算层;所述方法包括:利用设备层采集网络流量数据,并将网络流量数据发送至边缘计算层;利用边缘计算层下载的异常检测模型对网络流量数据进行分类,确定正常流量和异常流量,并将异常流量发送至云计算层;异常检测模型预设于云计算层;利用云计算层预设的深度学习模型识别异常流量的攻击技术,根据攻击技术结合ATT&CK框架确定攻击路径图;利用攻击路径图确定攻击链,根据攻击路径图及攻击链确定攻击目标和攻击源。通过云边协同架构,分层处理网络流量数据的分类和攻击行为识别。
-
公开(公告)号:CN119516558A
公开(公告)日:2025-02-25
申请号:CN202411673640.9
申请日:2024-11-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明涉及人工智能技术领域,公开了基于多任务提示的异常目标识别模型的训练方法和装置,模型包括:图像编码器、文本编码器、多层感知机和联合调度器;方法包括:获取属于预设识别任务的任务样本的集合;采用图像编码器,根据多任务因果提示和训练图像样本生成视觉提示特征;采用文本编码器,根据多任务因果提示和文本标签样本生成文本提示特征;采用多层感知机过滤视觉提示特征得到反事实视觉提示特征;采用对比学习,根据反事实视觉提示特征和文本提示特征之间以及预设识别类别的相似度确定任务损失;采用联合调度器分配各个任务损失的权重;采用权重和任务损失更新模型的参数,直至训练结束。本公开提高了异常目标识别的泛化性、降低错误率。
-
公开(公告)号:CN119248289A
公开(公告)日:2025-01-03
申请号:CN202411775766.7
申请日:2024-12-05
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F8/41
Abstract: 本发明公开了一种层次化自适应代码生成方法、系统及介质,该方法包括:基于代码token类型预测模块分析待生成代码的上下文,识别下一个待生成token的基本类型,所述基本类型包括基本结构、代码逻辑和高级语义内容;基于解码层自适应选择算法,自动选择适当的模型层进行输出预测;利用三种不同的分类解码策略分别生成属于基本结构、代码逻辑和高级语义内容的token。本发明提高了LLMs在代码生成任务中的可靠性,使模型能够更有效地利用其内在各层次的知识,减少了生成代码的结构性或语义性错误,能有效确保生成代码的逻辑性和可执行性。
-
公开(公告)号:CN117573975B
公开(公告)日:2024-12-13
申请号:CN202311548012.3
申请日:2023-11-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 鹏城实验室
IPC: G06F16/9535 , G06N3/0455 , G06N3/042 , G06N3/048 , G06N3/098
Abstract: 本发明提供了一种联邦跨领域的信息推荐方法、装置、终端设备及介质,所述信息推荐方法从服务器获取预先训练好的跨域序列推荐模型,并且通过用户的交互信息,确定对用户的推荐建议。该模型由服务器将多个本地模型聚合得到,每个本地模型对应一个客户端,并且每个本地模型在对应的客户端本地训练得到,这样,对于客户端来说,不需要将本地的数据上传到服务器,也可以通过服务器训练得到跨域序列推荐模型,然后从服务器获取该模型并进行应用,确保了客户端数据拥有方的数据隐私,此外相比现有的定制化推荐模型,跨域序列推荐模型通过多个本地模型聚合得到并且各本地模型分别由对应客户端本地训练得到,可以有效提高跨域序列推荐模型的性能和质量。
-
公开(公告)号:CN118536603A
公开(公告)日:2024-08-23
申请号:CN202410754029.2
申请日:2024-06-12
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 鹏城实验室
IPC: G06N5/04 , G06N3/0455 , G06N3/0464 , G06F18/22 , G06F18/25
Abstract: 本发明涉及生成式人工智能技术领域,公开了一种基于因果微调的个性化文生图模型构建及文生图方法,包括:将多个主体的多个参考图像、文本描述分别进行合并增强得到多个合并增强图像及合并文本描述;利用预设因果解耦算法,从各主体的文本描述、合并文本描述及合并增强图像中分别提取出保护身份的文本表征、身份相关及身份无关的视觉表征;将其输入预设因果推理模型,得到交叉注意力映射图;将交叉注意力映射图与对应主体身份相关的视觉表征对齐。本发明通过主体感知的因果解耦来鉴别主体身份相关的信息和身份无关的信息,保护主体身份信息,通过交叉注意力引导使每个主体的文本属性与视觉属性因果对齐,避免主体间混淆文生图的有效性、可控性。
-
公开(公告)号:CN117095243A
公开(公告)日:2023-11-21
申请号:CN202311345466.0
申请日:2023-10-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V10/764 , H04L9/40 , G06V10/774 , G06V10/80 , G06V10/82 , G06V10/70 , G06V10/74 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/24 , G06F18/25 , G06F18/20 , G06N3/045 , G06N3/0895 , G06N3/096 , G06N3/084 , G06N3/0985 , G06F123/02
Abstract: 本发明提供一种基于分支融合策略的小样本类增量网络入侵检测方法,包括:步骤一:将采集到的网络流量样本进行拆分处理,处理后的网络流量样本被转化为灰度图像表示;步骤二:将网络流量样本的灰度图像输入到骨干网络ViT中用于自监督模式的预训练以提高特征嵌入的表示能力;步骤三:初始化基础会话分支分类器的投影层参数,用于训练初始的检测分类模型;步骤四:学习每个新会话分支分类器模块,进而使用分支融合策略关联基础会话和新会话分支分类器从而帮助分类器模型完成训练和推理。本发明的有益效果是:本发明方法在不会遗忘已学习攻击类别的情况下,允许以增量、小样本、灵活的方式持续学习新攻击类别,实现保护目标网络系统免受恶意攻击。
-
公开(公告)号:CN116318929B
公开(公告)日:2023-08-29
申请号:CN202310206593.6
申请日:2023-03-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L41/0631 , H04L41/16
Abstract: 本发明涉及网络安全技术领域,特别涉及一种基于安全告警数据的攻击策略抽取方法。其方法包括以下步骤:S1.从告警文本中获取攻击者的单步攻击信息;S2.构建攻击活动序列集;S3.构建候选攻击策略;S4.构建攻击策略数据集;S5.预训练;S6.模型训练;S7.攻击策略抽取;S8.人工验证。本方法通过训练模型来判断攻击者的一个候选攻击策略是否为全部的有效攻击步骤,并且这些攻击步骤的组合能完成攻击者的攻击目的;通过这个模型,能够使用枚举候选攻击策略的方式关联出攻击者的全部有效攻击步骤,组成攻击者的攻击策略,而无需定义大量的关联规则;而且在过去的关联经验中未被关联的两个告警也可能被本方法所关联。
-
-
-
-
-
-
-
-
-