一种基于深度孪生自注意力网络的航空发动机小样本故障诊断方法

    公开(公告)号:CN115545092A

    公开(公告)日:2022-12-30

    申请号:CN202211057935.4

    申请日:2022-08-31

    Abstract: 本申请提供了一种基于深度孪生自注意力网络的航空发动机小样本故障诊断方法,采用时间序列聚类和孪生神经网络相结合,实现航空发动机小样本故障的诊断。本申请通过学习一种相似性度量来解决小样本条件下多标签分类问题,有效地提高小样本条件下多故障分类的准确率,有效地缓解深度神经网络的过拟合问题;使用SANet作为孪生神经网络的特征提取模块,以期学到更丰富的时序特征,进而提高不同类型样本在映射空间中的可分性;SANet可以同时提取时间序列的短期依赖和长期依赖,并在提取长期依赖方面优于RNN模型;有效地缓解样本不均衡所带来的训练问题,对故障样本的诊断效果更佳。

    基于状态基线的航空发动机气路单元体健康状态评价方法

    公开(公告)号:CN106777554B

    公开(公告)日:2021-03-23

    申请号:CN201611070039.6

    申请日:2016-11-29

    Abstract: 本发明具体地说是一种基于状态基线的航空发动机气路单元体健康状态评价方法,其特征在于包括如下步骤:步骤A,确定本评价体系需要获取的发动机巡航状态参数集合,并以此集合为依据划定样本库覆盖范围,以划定的覆盖范围为依据解析ACARS报文,收集发动机历史巡航数据,建立发动机机队状态基线训练样本库;步骤B,确定需要监控的单元体性能指标,分析单元体工作特性影响因素,建立各单元体状态基线模型;步骤C,从机队状态基线训练样本库中选择相应历史数据,对各单元体状态基线模型进行训练,获得单元体状态基线;步骤D,在对单台发动机的某单元体进行健康状态评价时,以准确评估单元体的缓慢性能衰退过程。

    一种重优化深度自动编码器及发动机自动检测系统

    公开(公告)号:CN111598222A

    公开(公告)日:2020-08-28

    申请号:CN202010406707.8

    申请日:2020-05-14

    Abstract: 本发明披露了一种重优化深度自动编码器,其特征在于:包括第一经典深度自动编码器模块、K-Means聚类模型模块和第二经典深度自动编码器模块;所述第一经典深度自动编码器模块训练完成后,通过所述第一经典深度自动编码器模块获得一重构误差集;所述K-Means聚类模型模块对所述重构误差集进行聚类,剔除其中重构误差较大的异常样本,保留正常样本作为新训练集;用所述新训练集对所述第二经典深度自动编码器模块进行训练。基于所述重优化深度自动编码器,本发明还提出了一种发动机自动检测系统。

    一种分阶段的航空发动机性能衰退模式挖掘方法

    公开(公告)号:CN107357994B

    公开(公告)日:2020-04-28

    申请号:CN201710575219.8

    申请日:2017-07-14

    Abstract: 本发明涉及航空发动机性能评估方法技术领域,具体的说是一种分阶段的航空发动机性能衰退模式挖掘方法,其特征在于包括以下步骤:进行性能参数预处理,具体包括粗大误差处理、降噪处理;进行性能衰退模式挖掘,包括快速衰退阶段模式挖掘和正常衰退阶段模式挖掘,本发明通过挖掘出发动机的长期衰退模式,为航空发动机的稳定运行和高效率维护提供了保证。

    考虑结构相关性的多寿命件更换策略搜索算法

    公开(公告)号:CN107358046B

    公开(公告)日:2019-12-31

    申请号:CN201710567229.7

    申请日:2017-07-12

    Abstract: 本发明涉及航空发动机维修技术领域,具体地说是一种考虑结构相关性的多寿命件更换策略搜索算法,在综合考虑航空发动机寿命件之间经济相关性和结构相关性的基础上,以全生命周期内寿命件更换总成本最低为优化目标,建立了多寿命件机会更换问题优化模型;针对优化模型的特点,提出了四种模型解空间约简规则,基于提出的规则提出一种基于约简规则的搜索算法,该算法可以获取模型的最优解。最后采用数值实验和应用案例对提出算法进行了评估和验证。结果表明,提出算法能够实现小规模多寿命件机会更换问题的精确求解。

    基于DBN的多维时序信息驱动航空发动机故障诊断方法

    公开(公告)号:CN110285976A

    公开(公告)日:2019-09-27

    申请号:CN201910615101.2

    申请日:2019-07-09

    Abstract: 本发明涉及一种基于DBN的多维时序信息驱动航空发动机气路故障诊断方法,包括:收集航空发动机ACARS数据;归一化处理,利用小波包变换方法提取参数内时序信息,利用动态时间归整方法提取参数间相关信息;将参数内时序信息与参数间相关信息向量化,转化为一维向量;训练故障诊断模型,故障诊断模型先利用DBN对输入的一维向量进行深度特征提取,再利用SVM基于深度特征提取结果进行故障诊断;利用训练好的故障诊断模型对测试集提取得到的发动机样本特征进行故障识别;统计故障诊断模型的故障识别结果,并进行评价;利用保存的故障诊断模型对航空发动机ACARS数据进行故障识别,得到诊断结果。该方法可以充分利用数据的多维时序信息,有效处理数据高维特征。

    一种基于深度学习的复杂装备点异常检测方法及系统

    公开(公告)号:CN108334907B

    公开(公告)日:2019-05-17

    申请号:CN201810131253.0

    申请日:2018-02-09

    Abstract: 本发明涉及一种基于深度学习的复杂装备点异常检测方法及系统,其中方法包括:训练样本处理步骤、选取复杂装备的监控性能参数,并获取监控性能参数的正常样本和异常样本,构成训练样本集;特征提取步骤、构建基于SDAE的特征提取模型,输入所述训练样本集进行模型训练;检测模型训练步骤、根据经特征提取模型训练得到的特征构建基于GSM的异常检测模型,得到异常检测模型的特征均值和特征标准差;异常检测步骤、将待测样本输入到基于SDAE的特征提取模型,得到的特征输入到基于GSM的异常检测模型中,进行点异常检测。本发明对于复杂装备尤其是航空发动机出现的点异常检测效果明显。

    一种基于不均衡样本的航空发动机故障诊断方法、系统

    公开(公告)号:CN109753742A

    公开(公告)日:2019-05-14

    申请号:CN201910028648.2

    申请日:2019-01-11

    Abstract: 本申请涉及一种基于不均衡样本的航空发动机故障诊断方法、系统。所述基于不均衡样本的航空发动机故障诊断方法包括:获取不均衡样本集的不均衡样本特征集;对不均衡样本特征集进行采样,从而生成多个均衡样本特征子集;为每个均衡样本特征子集生成与每个均衡样本特征子集对应的训练后的集成分类器,各个训练后的集成分类器形成一个训练后的集成分类器组;获取航空发动机待测试集的待测试特征集;生成与均衡样本特征子集数量相同的均衡样本待测试特征子集;将均衡样本待测试特征子集输入至训练后的集成分类器组中,从而获得对应的航空发动机是否故障的结果。本申请提供的基于不均衡样本的航空发动机故障诊断方法通过进行采样,具有更可靠的准确性。

    大涵道比民航发动机性能诊断方法及系统

    公开(公告)号:CN107977526B

    公开(公告)日:2019-02-26

    申请号:CN201711365259.6

    申请日:2017-12-18

    Abstract: 本发明涉及一种大涵道比民航发动机性能诊断方法及系统,其中方法包括:采用非线性方法对发动机各个气路单元体进行单独建模并组建为发动机整机稳态模型,并利用健康发动机的观测数据对模型参数进行训练;通过滑动窗口采样方法获得待诊断发动机的气路参数的观测值,基于所述发动机整机稳态模型,利用改进的无迹卡尔曼滤波的观测方程对待诊断发动机的气路参数的观测值进行滤波,得到用于评估单元体衰退程度的多个单元体衰退因子。本发明通过将发动机稳态建模和无迹卡尔曼滤波相结合对单元体衰退趋势进行跟踪,在民航发动机飞行数据上的实验显示,该方法所获得的性能诊断结果具有较高的准确性。

    一种基于CNN与SVM的民航发动机气路故障诊断方法

    公开(公告)号:CN109115501A

    公开(公告)日:2019-01-01

    申请号:CN201810763325.3

    申请日:2018-07-12

    CPC classification number: G01M15/00 G06K9/6256 G06K9/6269 G06N3/0454 G06N3/08

    Abstract: 本发明涉及一种基于CNN与SVM的民航发动机气路故障诊断方法,包括获取民航发动机气路状态数据;构造训练集和测试集;利用训练集对CNN模型进行训练;利用训练完成的CNN模型对测试集中的样本进行特征挖掘,组成测试样本特征集;利用测试样本特征集训练SVM对各种故障进行分类;将待诊断的民航发动机气路状态数据输入训练完的CNN模型得到待测样本特征,并利用所述SVM进行分类,得到气路故障类型。本发明利用卷积神经网络直接对矩阵进行处理,既考虑了输入参数随时间变化的关系,又考虑了输入参数之间的关系;同时利用SVM进行分类,很好地解决了民航发动机故障样本不足的局限,能够有效且准确的实现民航发动机气路故障诊断。

Patent Agency Ranking