-
公开(公告)号:CN110004149B
公开(公告)日:2021-03-16
申请号:CN201910308366.8
申请日:2019-04-17
Applicant: 厦门大学
IPC: C12N15/115 , G01N33/68 , G01N33/574 , A61K47/26 , A61P35/00
Abstract: 本发明公开了一种程序性死亡受体‑配体1(PD‑L1)的核酸适体及其应用,涉及一种核酸。提供能够高特异性识别、高亲和力结合PD‑L1的核酸适体。所述核酸适体可通过基于琼脂糖微珠分离‑流式细胞术分析的蛋白SELEX方法筛选制备。所述核酸适体具有富含G碱基、具有茎环结构、易合成和标记、成本低、稳定性好、非免疫原性等特点,并且利用该核酸适体实现了PD‑L1蛋白、表达PD‑L1蛋白的肿瘤细胞系及肿瘤细胞系分泌的表达PD‑L1蛋白外泌体的特异性识别,验证了其在生化分析检测领域中的应用,并有望作为检测PD‑L1表达水平的分子识别工具,而应用于临床医学肿瘤免疫研究领域PD‑1/PD‑L1抑制剂疗效的精准预测和动态监测。
-
公开(公告)号:CN111647690A
公开(公告)日:2020-09-11
申请号:CN202010578160.X
申请日:2020-06-22
IPC: C12Q1/70 , C12Q1/6848 , C12N15/11 , C12R1/93
Abstract: 一种用于检测COVID-19病毒的RT-RAA引物对,其上游引物包括SEQ No 1所示的核酸序列,下游引物包括SEQ No 2所示的核酸序列。采用本发明提供的引物对建立的检测方法,操作简单且不易交叉感染,反应快速,结果准确可靠,适用于COVID-19的快速检测,可用于疫情早诊断、早隔离、降低感染率以及控制疫情蔓延。
-
公开(公告)号:CN109991423B
公开(公告)日:2020-06-26
申请号:CN201910083613.9
申请日:2019-01-29
Applicant: 厦门大学
IPC: G01N33/68 , G01N33/543 , C12M3/00 , B01L3/00
Abstract: 本发明公开了一种高效单细胞捕获与快速单细胞分泌蛋白检测平台及检测方法;该检测平台由单细胞捕获与液滴孵育微流控芯片、分泌蛋白捕获玻璃板、芯片夹具三部分组成;其中细胞捕获与液滴孵育微流控芯片有两层结构,分别是单细胞捕获与液滴孵育层、隔离阀层。该平台可高效快速的进行单细胞的捕获,通过隔离相的加入快速稳定的生成含有单个细胞的微液滴并可进行长期的液滴孵育,同时保证单细胞的高活性,将该芯片与分泌蛋白的检测的抗体阵列玻璃板相结合,可实现单细胞分泌蛋白高通量、快速、高灵敏度的检测。
-
公开(公告)号:CN110237874A
公开(公告)日:2019-09-17
申请号:CN201910393722.0
申请日:2019-05-13
Applicant: 厦门大学
IPC: B01L3/00
Abstract: 本发明涉及一种用于生成非球形液滴的芯片及方法。该方法通过纳米粒子自组装在油水界面处,使液滴的形貌具有一定的可塑性,并结合液滴生成芯片,稳定快速地生成了均一的非球形的液滴。该方法具有简单,快速,可调控性强等优点。解决了之前非球形液滴生成步骤复杂,形貌调控灵活性不足,均一性不足等问题。本发明同样涉及这种均一非球形液滴的应用,此种非球形液滴可广泛应用于非球形微球合成,微纳米材料自组装,药物胶囊制备等生物、化学、材料、物理、医疗诊断及其相关领域。
-
公开(公告)号:CN110055158A
公开(公告)日:2019-07-26
申请号:CN201910280018.4
申请日:2019-04-09
Applicant: 厦门大学
Abstract: 本发明公开了一种微流控芯片的动态修饰方法及其捕获CTCs的应用。该方法采用动态修饰,通过微球将待修饰分子修饰在微流控芯片内。微球偶联的待修饰分子与制备好的微流控芯片可分别保存,因此其保存更简单、方便,产品货架期长。同时,该方法对芯片材质的要求低,通用性好,如聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)等传统方法不易修饰的材质也适用。此外,其修饰步骤少,较大地缩短了芯片的制备和修饰时间。且修饰时试剂利用率高,浪费少,可有效降低成本。其可望应用于生物与医学分析等领域。
-
公开(公告)号:CN107449927B
公开(公告)日:2019-07-23
申请号:CN201710670159.8
申请日:2017-08-07
Applicant: 厦门大学
IPC: G01N35/00
Abstract: 本发明公开了一种3D集成纸芯片及可视化快速定量检测靶标方法,本发明将信号识别、探针分离、信号转导与放大以及信号输出集成3D纸芯片上,可实现对靶标的快速可视化定量检测。本发明利用靶标和信号识别分子的特异性结合,引发信号放大探针的释放。同时,利用微球和滤纸孔径大小的差异,实现被释放的信号放大探针和固定在微球表面探针的分离。再通过折叠3D纸芯片装置,实现探针的转移,进而触发酶的级联反应,最终以距离最为信号输出方式。本发明具有检测快速,操作简单、价格低廉、高度集成化以及不需要对样品进行复杂前处理等优点。
-
公开(公告)号:CN109920482A
公开(公告)日:2019-06-21
申请号:CN201910084542.4
申请日:2019-01-29
Applicant: 厦门大学
IPC: G16B25/00 , C12Q1/6869
Abstract: 本发明涉及一种分析单细胞内含物的方法。所述的方法主要步骤包括:1、利用便携式单微粒移液器,制备装载有单个编码微球的96或384孔板。2、利用荧光激活流式分选仪器分选单细胞、或用移液器分离稀有细胞至微孔板,实现单细胞与单微球快速一对一配对。3、利用编码微球将单个细胞的内含物信息转化为DNA序列信息,并结合高通量测序技术以及生物信息学对测序数据进行分析。本发明方法可以实现单个编码微球的高效、稳定的低成本分离,具有技术门槛低、克服泊松分布、靶标范围广、通量可控、成本低等优势。并且,所发展的单微粒移液器也可用于稀有细胞的捕获和测序,可广泛应用于基础研究及临床诊断单细胞分析等领域。
-
公开(公告)号:CN109722385A
公开(公告)日:2019-05-07
申请号:CN201910083604.X
申请日:2019-01-29
Applicant: 厦门大学
Abstract: 本发明公开了一种用于精确操控和配对单微粒的微流控芯片。所述芯片,包括通道层和控制层。所述的通道层包括多个捕获和转移单微粒的单元,每个单元由捕获流道,捕获腔室,捕获缝隙,转移流道,配对腔室,配对缝隙组成。所述的控制层位于捕获流道和配对流道的下方,与捕获流道和配对流道垂直并由隔膜隔离开。本芯片可高效率,精确操控单微粒的捕获和转移,并且经过不同轮数的单微粒捕获和转移后,可实现高通量,高效率的单微粒配对,且配对微粒的数量和种类可控。可广泛应用于单细胞的隔离与培养,单细胞异质性分析,多细胞共培养,多细胞相互作用及潜在机理的揭示等。
-
公开(公告)号:CN107098934B
公开(公告)日:2019-03-12
申请号:CN201710223455.3
申请日:2017-04-07
Applicant: 厦门大学
Abstract: 一种邻苯二醛衍生物亚磷酰胺单体、合成方法和及DNA快速偶联蛋白质的方法,涉及DNA快速偶联蛋白质。所述邻苯二醛衍生物亚磷酰胺单体的分子式为C28H46N3O6P。首先邻苯二醛羧酸衍生物(OPA‑COOH)与6‑氨基‑1‑己醇反应制备邻苯二醛羟基衍生物(OPA‑OH),然后在氮气保护及二氯甲烷溶剂和N,N‑二异丙基乙胺条件下,与2‑氰乙基‑N,N‑二异丙基氯代亚磷酰胺室温条件下反应2h,经硅胶柱层析分离,得到邻苯二醛衍生物亚磷酰胺单体。利用邻苯二醛衍生物的相邻醛基能够与蛋白质赖氨酸残基上的氨基进行快速、高效生成苄甲内酰胺的反应特点,最终实现OPA‑DNA与天然蛋白质快速偶联的目的。与其他偶联方法相比,该方法具有选择性、快速、高效的优点。
-
-
-
-
-
-
-
-
-