-
公开(公告)号:CN109037397A
公开(公告)日:2018-12-18
申请号:CN201810692621.9
申请日:2018-06-29
Applicant: 南开大学
IPC: H01L31/18 , H01L51/44 , H01L31/054 , H01L31/048 , H01L51/48
CPC classification number: H01L31/048 , H01L31/0547 , H01L31/1804 , H01L51/0001 , H01L51/44
Abstract: 一种减反射膜的制备方法及叠层太阳电池。所述减反射膜的制备包括:在衬底上制备绒度结构;在绒度结构表面均匀涂布一层固化胶;对固化胶进行固化处理;将绒度结构衬底与固化胶分离,得到具有绒度结构的减反射膜。该减反射膜可用于叠层太阳电池的制备中。可有效降低叠层电池的反射损失,增加光吸收,提高电池整体的光谱响应,并最终提高器件的综合输出性能;制备工艺简单,成本低廉,可重复利用,并且适用于大面积制备和生产;器件制作成本几乎没有增加;大大降低了叠层电池设计中引入衬底绒度结构的实施难度,并且绒度调控的可操作性得以增强,具有较强的应用普适性。
-
公开(公告)号:CN108198904A
公开(公告)日:2018-06-22
申请号:CN201711453544.3
申请日:2017-12-28
Applicant: 南开大学
IPC: H01L31/18 , H01L31/048
Abstract: 本发明提供一种钙钛矿/硅异质结叠层太阳电池的封装方法,涉及太阳电池领域。该方法是在钙钛矿/硅异质结叠层太阳电池正表面,利用特殊设计的掩膜板来制备便于封装的透明电极与金电极,再使用平均透过率在89%以上的超薄玻璃或者聚对苯二甲酸乙二醇酯(PET)膜以及透明AB胶来对钙钛矿/硅异质结叠层太阳电池进行封装,最大程度地保证了密封性,使得钙钛矿/硅异质结叠层太阳电池的稳定性得到明显的提升,且方法简单,易于实施。
-
公开(公告)号:CN104362183B
公开(公告)日:2017-02-01
申请号:CN201410488516.5
申请日:2014-09-23
Applicant: 南开大学
IPC: H01L31/0216 , H01L31/20 , H01L31/0445 , H01L31/075 , C23C16/22 , C23C16/513
CPC classification number: Y02E10/50 , Y02P70/521
Abstract: 一种具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用,所述薄膜碳含量为30-80%,靠近本征层处采用低辉光功率密度,随着薄膜厚度的增加,辉光功率密度按照公式:P(t)=P0+A•t逐渐上升,其中P为辉光功率,P0为初始功率密度,A为线性变化速率,t为辉光时间,最终实现折射率纵向渐进式变化,折射率在400 nm波长处变化范围为2.8-2.2;该折射率渐变特征的硅碳窗口层薄膜用于硅基薄膜太阳电池。本发明的优点是:该材料光学带隙可达2.0~3.7 eV,电导率可达0.1~5.0 Ω•cm,同时有效减少窗口层光学损失,从而显著提高太阳电池的填充因子、开路电压和短波响应,最终提高了光电转换效率。
-
公开(公告)号:CN102168256B
公开(公告)日:2013-07-31
申请号:CN201110066989.2
申请日:2011-03-21
Applicant: 南开大学
CPC classification number: Y02P70/521
Abstract: 一种利用MOCVD梯度掺杂技术生长ZnO:B薄膜,利用MOCVD技术,以玻璃基片为衬底,以二乙基锌和水为原料,以硼烷作为掺杂气体,在玻璃基片上先生长未掺杂B或者低掺杂B的ZnO透明导电薄膜;然后同样利用MOCVD技术,在上述薄膜基础上分阶段梯度掺杂生长ZnO,制备玻璃基片/未掺杂B或低B掺杂ZnO/正常B掺杂ZnO透明导电薄膜。本发明的优点是:通过初期生长未掺杂或者低B掺杂ZnO薄膜,而后采用正常情况下的掺杂,实现大晶粒尺寸,高可见光及近红外透过率的ZnO薄膜。该薄膜适合应用于p-i-n型Si基薄膜太阳电池,尤其是a-Si/μc-Si叠层薄膜太阳电池,可进一步提高Si薄膜电池的性能。
-
公开(公告)号:CN102945865A
公开(公告)日:2013-02-27
申请号:CN201210483988.2
申请日:2012-11-23
Applicant: 南开大学
IPC: H01L31/0224 , H01L31/18 , H01L31/20
CPC classification number: Y02P70/521
Abstract: 一种基于金字塔绒度形貌ZnO层的导电背反射电极,由衬底、具有金字塔表面形貌ZnO层、金属银层和ZnO界面层组成薄膜叠层结构,所述具有金字塔表面形貌ZnO层为本征ZnO或掺杂Al、Ga、B、Mo、W的ZnO材料;其制备方法是:先在衬底上采用超声喷雾技术生长或金属有机物化学气相沉积技术制备具有的金字塔形貌的ZnO薄膜,然后依次银薄膜层和ZnO薄膜界面层。该基于金字塔绒度形貌ZnO层的导电背反射电极,陷光效果好,可同时实现宽光谱、高绒度反射,光利用率高;其制备方法工艺简单、易于实施;作为背反射电极用薄膜太阳电池,比传统的基于绒度金属铝来实现绒度反射制备的相同条件的电池短路电流密度提高10%以上。
-
公开(公告)号:CN102916061A
公开(公告)日:2013-02-06
申请号:CN201210435814.9
申请日:2012-11-05
Applicant: 南开大学
IPC: H01L31/028 , H01L31/0368 , H01L31/0376 , H01L31/0352
CPC classification number: Y02E10/50
Abstract: 一种窄带隙微晶锗-非晶锗异质吸收层材料,是采用层递式循环沉积方法制备的由微晶锗薄膜和非晶锗薄膜交替生长的多层材料,微晶锗薄膜的厚度为20-50nm,非晶锗薄膜的厚度为1-10nm,然后进行等离子体处理或化学退火处理,如此循环沉积微晶锗薄膜和非晶锗薄膜,直至形成总厚度为50-1500nm的微晶锗-非晶锗异质薄膜;该窄带隙微晶锗-非晶锗异质吸收层材料可用于基于Ⅳ族薄膜材料的宽光谱四端叠层硅基薄膜太阳电池。本发明的优点是:可将薄膜太阳电池的光谱响应范围拓展至1800nm,在不增加设备成本的前提下便可获得基于Ⅳ族薄膜材料的新型宽光谱叠层太阳电池,更加充分地利用了太阳光谱,提高了电池的光电转换效率。
-
公开(公告)号:CN102433545A
公开(公告)日:2012-05-02
申请号:CN201110443695.7
申请日:2011-12-26
Applicant: 南开大学
IPC: C23C16/40 , C23C16/30 , H01L31/0224
Abstract: 一种交替生长技术制备绒面结构ZnO薄膜,以二乙基锌和水为源材料,以氢气稀释掺杂气体硼烷B2H6,采用金属有机化学气相沉积法在玻璃衬底上交替生长绒面结构ZnO-TCO薄膜,步骤如下:1)首先在玻璃衬底上生长一层未掺杂ZnO薄膜;2)然后在上述未掺杂ZnO薄膜生长B掺杂型ZnO薄膜;3)重复上述1)和2)步骤,从而获得多层交叠生长的ZnO薄膜。本发明的优点是:MOCVD技术可实现玻璃衬底上直接生长绒面结构ZnO薄膜,该制备方法工艺简单,便于大面积生产推广;通过工艺技术兼容的交替生长技术,有利于实现可见光及近红外区域光散射和后续硅基薄膜沉积;应用于薄膜太阳电池,可有效提高太阳电池的光电转换效率。
-
公开(公告)号:CN101582468B
公开(公告)日:2011-06-15
申请号:CN200910069330.5
申请日:2009-06-19
Applicant: 南开大学
IPC: H01L31/18 , H01L31/20 , H01L31/0216 , H01L31/0232 , H01L31/0236 , H01L31/042 , H01L31/075 , H01L31/028 , C23C28/00 , C23C14/35 , C23C14/08 , C23C16/44 , C23C16/30
CPC classification number: Y02E10/52 , Y02P70/521
Abstract: 一种生长太阳电池用高迁移率绒面结构IMO/ZnO复合薄膜的方法。此种技术生长IMO/ZnO薄膜分两个阶段进行。首先,利用溅射技术玻璃衬底上生长一层高迁移率IMO(IMO即Mo掺杂In2O3,掺杂剂为Mo或MoO3,表达式为In2O3:Mo或In2O3:MoO3)透明导电薄膜,薄膜厚度50-100nm;其次,利用MOCVD技术生长低组分B掺杂ZnO薄膜(ZnO:B),薄膜厚度800-1500nm。新型复合TCO薄膜的结构特征是glass/高迁移率IMO薄膜/绒面结构ZnO:B。典型薄膜电阻率5-8×10-4Ωcm,方块电阻5-20Ω,载流子浓度3-10×1020Ωcm,电子迁移率25-80cm2V-1s-1,可见光和近红外区域平均透过率80%。此种工艺技术获得的高迁移率绒面结构IMO/ZnO薄膜提高了近红外区域光谱透过(λ=800-1500nm),并增强了对入射光的散射,可应用于pin型Si基薄膜太阳电池,特别是a-Si/μc-Si叠层薄膜太阳电池。
-
公开(公告)号:CN101582468A
公开(公告)日:2009-11-18
申请号:CN200910069330.5
申请日:2009-06-19
Applicant: 南开大学
IPC: H01L31/18 , H01L31/20 , H01L31/0216 , H01L31/0232 , H01L31/0236 , H01L31/042 , H01L31/075 , H01L31/028 , C23C28/00 , C23C14/35 , C23C14/08 , C23C16/44 , C23C16/30
CPC classification number: Y02E10/52 , Y02P70/521
Abstract: 一种利用磁控溅射技术和MOCVD技术相结合生长高迁移率绒面结构IMO/ZnO薄膜的方法及太阳电池应用。此种技术生长IMO/ZnO薄膜分两个阶段进行。首先,利用溅射技术玻璃衬底上生长一层高迁移率IMO(IMO=Mo掺杂In2O3,In2O3:Mo&In2O3:MoO3)透明导电薄膜,薄膜厚度50-100nm;其次,利用MOCVD技术生长低组分B掺杂ZnO薄膜(ZnO:B),薄膜厚度800-1500nm。新型复合TCO薄膜的结构特征是glass/高迁移率IMO薄膜/绒面结构ZnO:B。典型薄膜电阻率5-8×10-4Ωcm,方块电阻5-20Ω,载流子浓度3-10×1020Ωcm,电子迁移率25-80cm2V-1s-1,可见光和近红外区域平均透过率80%。此种工艺技术获得的高迁移率绒面结构IMO/ZnO薄膜提高了近红外区域光谱透过(λ=800-1500nm),并增强了对入射光的散射,可应用于pin型Si基薄膜太阳电池,特别是a-Si/μc-Si叠层薄膜太阳电池。
-
公开(公告)号:CN101510575A
公开(公告)日:2009-08-19
申请号:CN200910068278.1
申请日:2009-03-27
Applicant: 南开大学
CPC classification number: Y02P70/521
Abstract: 一种聚酰亚胺塑料衬底柔性硅基薄膜太阳电池集成组件的制造方法,将透光性好的浆体聚酰亚胺刮涂在普通玻璃上,分两部低温固化,形成玻璃-聚酰亚胺薄膜复合衬底,然后按着玻璃衬底硅基薄膜太阳电池组件的制备工艺形成电池组件,引线封装后采用室温下用水浸泡的方式将已制备好的太阳电池组件从玻璃上剥离,从而获得塑料衬底的柔性电池集成组件。本发明的优点是:可利用现已成熟的玻璃衬底硅基薄膜太阳电池组件的制备设备和加工技术制造新型塑料衬底柔性硅基薄膜太阳电池集成组件,节省了昂贵的柔性衬底太阳电池设备和工艺的设计、可大大降低了制造成本,有利于加快该类新型电池的产业化进程。
-
-
-
-
-
-
-
-
-