-
公开(公告)号:CN110233056A
公开(公告)日:2019-09-13
申请号:CN201910517921.8
申请日:2019-06-14
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种Co-Ni-S纳米片材料及其制备方法与应用,纳米片材料的制备方法包括以下步骤:1)将可溶性镍盐、可溶性钴盐及尿素溶于水中后,加入硫脲并进行水热反应;2)反应结束后,经离心、洗涤、干燥,即得到CoNi2S4纳米片材料;将纳米片材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明CoNi2S4纳米片材料的制备方法环境友好、简单方便,采用一步溶剂热反应即合成了CoNi2S4纳米片材料,大大简化了反应步骤,缩短了合成时间,提高了反应速率和效率,便于大规模生产高纯度的CoNi2S4纳米片;且CoNi2S4纳米片材料具有高比表面积、很高的比电容、良好的循环性能和高能量密度,电化学性能优异,可进一步制备成工作电极,用于超级电容器中。
-
公开(公告)号:CN112662039B
公开(公告)日:2023-04-28
申请号:CN202011435238.9
申请日:2020-12-10
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种力学性能优良的阻燃EVA,包括以下重量份组分的原料:EVA 50‑60份;氢氧化铝25‑35份;氢氧化镁15‑25份;碳酸钙0.5‑15份;硬脂酸1‑5份。本发明以氢氧化铝,氢氧化镁或者碳酸钙一种或多种作为阻燃体系,硬脂酸为改性剂,EVA作为复合材料主体,制得所述的一种力学性能优良阻的EVA及其制备方法。
-
公开(公告)号:CN111420679B
公开(公告)日:2022-12-16
申请号:CN202010151939.3
申请日:2020-03-06
Applicant: 上海应用技术大学
IPC: B01J27/043 , B01J35/10 , C25B1/04 , C25B11/093
Abstract: 本发明涉及一种Co@NiSx‑CNT电极材料及其制备方法与应用,制备方法为:将钴源、镍源、硫源及N,N‑二甲基甲酰胺混合均匀得到混合液,之后加入碳纳米管,混合均匀后得到反应液;将反应液进行高温水热反应,经后处理即得到Co@NiSx‑CNT电极材料,该电极材料应用在电催化析氢反应中。与现有技术相比,本发明Co@NiSx‑CNT电极材料的合成过程简便且安全,通过将材料负载在碳纳米管上增加了材料的比表面积,解决了硫化物表面暴露的活性位点不足的问题,提高了材料的电化学性能。
-
公开(公告)号:CN110416514B
公开(公告)日:2022-05-20
申请号:CN201910671726.0
申请日:2019-07-24
Applicant: 上海应用技术大学
IPC: H01M4/36 , H01M4/587 , H01M10/0525
Abstract: 本发明涉及一种腐殖酸类衍生碳化物负极材料的制备方法,以腐殖酸类衍生碳化物样品为原料,洗净过滤并烘干,过筛后经去离子水反复冲洗,最后在惰性气体氛围中煅烧得到腐殖酸类衍生碳化物负极材料。与现有技术相比,本发明制备出的腐殖酸类衍生碳化物负极材料具有高的可逆容量,非常好的循环稳定性并且绿色可持续,在锂离子电池领域具有广泛的应用前景。
-
公开(公告)号:CN111710529B
公开(公告)日:2022-04-05
申请号:CN202010431727.0
申请日:2020-05-20
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种Co/Mn‑MOF/氮掺杂碳基复合材料及其制备方法与应用,复合材料的制备方法包括以下步骤:1)制备氮掺杂多孔碳及双金属混合溶液;2)将氮掺杂多孔碳加入至双金属混合溶液中,之后进行水热反应,后经冷却、洗涤、干燥,即得到Co/Mn‑MOF/氮掺杂碳基复合材料。将复合材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明中,氮掺杂多孔碳的三维多孔结构与Co/Mn双金属有机骨架的协同作用,形成具有高比电容、高导电性以及更好的循环稳定性的超级电容器电极材料,制备过程环境友好,制备方法简单,为制备高性能超级电容器电极材料提供了一种有效途径。
-
公开(公告)号:CN111710536B
公开(公告)日:2022-02-11
申请号:CN202010431922.3
申请日:2020-05-20
Applicant: 上海应用技术大学
IPC: H01G11/46 , H01G11/32 , H01G11/24 , H01G11/86 , C01B32/348 , C01B32/354
Abstract: 本发明涉及一种五氧化二钒/山楂基多孔碳复合材料及其制备方法和应用,其制备方法包括以下步骤:S1:将山楂干燥后与活化剂KOH混合,加入去离子水,搅拌均匀后干燥,高温煅烧,冷却至室温后洗涤至中性,干燥,得到AC;S2:将V2O5和H2C2O4·2H2O溶于去离子水中,加热搅拌,完全溶解后加入H2O2,室温条件下搅拌,得到混合液;S3:将混合液和乙醇混合,加入AC,进行水热反应,降温到室温后,洗涤,干燥,得到目标产物。与现有技术相比,本发明结合了多孔碳材料的高比表面积的优点和V2O5所具备的低成本、资源丰富、高容量及宽工作电压范围等特点;且制备方法简单,环境友好,便于大规模生产。
-
公开(公告)号:CN111415823B
公开(公告)日:2021-12-07
申请号:CN202010151958.6
申请日:2020-03-06
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种Ni‑Sn‑S复合材料及其制备方法与应用,复合材料的制备方法包括以下步骤:1)将Na2SnO3溶液和Ni(CH3COO)2溶液混合均匀,之后加入硫代乙酰胺并进行水热反应;2)水热反应结束后,经后处理,即得到Ni‑Sn‑S复合材料;将复合材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明通一步水热法合成了Ni‑Sn‑S复合材料,该复合材料具有良好的电化学性能,且该制备方法简单,环境友好,便于大规模生产。
-
公开(公告)号:CN110797206B
公开(公告)日:2021-12-07
申请号:CN201911053422.4
申请日:2019-10-31
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种Co‑Mn‑S复合材料及其制备方法和应用,制备方法包括以下步骤:S1:制备ZIF‑67;S2:将ZIF‑67分散于水中,然后加入到可溶性锰盐和硫脲的混合溶液中,并放入高压釜中反应,反应后的产物洗涤、干燥,得到Co‑Mn硫化物前驱体;S3:将Co‑Mn硫化物前驱体在氩气条件下煅烧,得到目标产物;将复合材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明复合材料的制备方法环境友好、简单方便,便于大规模生产高纯度的Co‑Mn‑S复合材料,且Co‑Mn‑S复合材料具有高比表面积、高比电容、良好的循环性能和高能量密度,电化学性能优异,可进一步制备成工作电极,用于超级电容器。
-
公开(公告)号:CN111705332B
公开(公告)日:2021-07-20
申请号:CN202010430892.4
申请日:2020-05-20
Applicant: 上海应用技术大学
IPC: C25B11/054 , C25B11/089 , C25B11/031 , C25B1/02 , C25D3/56 , B01J23/83 , B01J37/34
Abstract: 本发明涉及一种简单电沉积Co‑Ce/NF电极材料及其制备和应用,该制备方法包括以下步骤:(1)取钴源、铈源和氯化铵溶于去离子水,混合至溶液澄清,得到电沉积溶液;(2)在装有步骤(1)中的电沉积溶液的电沉积装置中,将泡沫镍作为工作电极连接,氯化银电极作参比电极,铂丝电极为对电极,经一步电沉积法后得到Co‑Ce/NF材料;(3)所得Co‑Ce/NF材料洗涤、烘干后,即得到目的产物Co‑Ce/NF电极材料。与现有技术相比,本发明合成的Co‑Ce/NF电极材料通过将稀土元素铈和钴形成合金产生协同作用,用稀土元素的活泼性改善了钴合金的电化学性能,且以泡沫镍作为载体增加了材料表面积,此外合成方法简便、能耗低,电化学性能优秀,有望应用于工业大规模生产。
-
公开(公告)号:CN111276338B
公开(公告)日:2021-07-20
申请号:CN202010076650.X
申请日:2020-01-23
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种CoO/NiOOH复合材料的制备方法,包括以下步骤:S1:将可溶性钴盐溶于甲醇中得到钴盐的甲醇溶液;将2‑甲基咪唑溶于甲醇中得到2‑甲基咪唑的甲醇溶液;将所述的钴盐的甲醇溶液和2‑甲基咪唑的甲醇溶液在搅拌条件下混合得到均匀溶液;S2:将所述的均匀溶液置于反应釜中进行水热反应,水热反应得到的沉淀物经过洗涤、干燥、保护气氛条件下煅烧得到CoO;S3:将步骤S2得到的CoO加入水中,搅拌条件下加入硫酸镍、K2S2O8形成均匀悬浮液,然后向上述的均匀悬浮液中逐滴加入氨水调节溶液的pH为9.5~10.5,加热、搅拌条件下进行反应,反应后的沉淀物经过洗涤、干燥得到所述的CoO/NiOOH复合材料。与现有技术相比,本发明具有环境友好、制备方法简单、便于大规模生产等优点。
-
-
-
-
-
-
-
-
-