一种三维结构的石墨烯基氧化铁复合材料及其制备与应用

    公开(公告)号:CN110707319B

    公开(公告)日:2021-09-28

    申请号:CN201910927035.2

    申请日:2019-09-27

    Abstract: 本发明涉及一种三维结构的石墨烯基氧化铁复合材料及其制备与应用,复合材料的制备方法包括以下步骤:1)将亚铁氰化钾溶液与氧化石墨烯溶液混合,之后加入水,得到混合溶液;2)将氯化铁加入至混合溶液中,之后进行水热反应,得到气凝胶;3)将气凝胶洗涤、干燥后,进行高温碳化即可;该复合材料用于锂离子电池负极材料。与现有技术相比,本发明原料具有可设计性,成本低廉,且通过高温煅烧碳化的方法制备石墨烯基氧化铁复合材料,煅烧过程中石墨烯三维结构的组装与氧化铁在石墨烯骨架中能够完美融合,方法简便;制备出的石墨烯基氧化铁复合材料具有高的可逆容量,非常好的循环稳定性和倍率性能,在可充电电池领域具有广泛的应用前景。

    一种简单电沉积Co-Ce/NF电极材料及其制备和应用

    公开(公告)号:CN111705332B

    公开(公告)日:2021-07-20

    申请号:CN202010430892.4

    申请日:2020-05-20

    Abstract: 本发明涉及一种简单电沉积Co‑Ce/NF电极材料及其制备和应用,该制备方法包括以下步骤:(1)取钴源、铈源和氯化铵溶于去离子水,混合至溶液澄清,得到电沉积溶液;(2)在装有步骤(1)中的电沉积溶液的电沉积装置中,将泡沫镍作为工作电极连接,氯化银电极作参比电极,铂丝电极为对电极,经一步电沉积法后得到Co‑Ce/NF材料;(3)所得Co‑Ce/NF材料洗涤、烘干后,即得到目的产物Co‑Ce/NF电极材料。与现有技术相比,本发明合成的Co‑Ce/NF电极材料通过将稀土元素铈和钴形成合金产生协同作用,用稀土元素的活泼性改善了钴合金的电化学性能,且以泡沫镍作为载体增加了材料表面积,此外合成方法简便、能耗低,电化学性能优秀,有望应用于工业大规模生产。

    一种CoO/NiOOH复合材料的制备方法及应用

    公开(公告)号:CN111276338B

    公开(公告)日:2021-07-20

    申请号:CN202010076650.X

    申请日:2020-01-23

    Abstract: 本发明涉及一种CoO/NiOOH复合材料的制备方法,包括以下步骤:S1:将可溶性钴盐溶于甲醇中得到钴盐的甲醇溶液;将2‑甲基咪唑溶于甲醇中得到2‑甲基咪唑的甲醇溶液;将所述的钴盐的甲醇溶液和2‑甲基咪唑的甲醇溶液在搅拌条件下混合得到均匀溶液;S2:将所述的均匀溶液置于反应釜中进行水热反应,水热反应得到的沉淀物经过洗涤、干燥、保护气氛条件下煅烧得到CoO;S3:将步骤S2得到的CoO加入水中,搅拌条件下加入硫酸镍、K2S2O8形成均匀悬浮液,然后向上述的均匀悬浮液中逐滴加入氨水调节溶液的pH为9.5~10.5,加热、搅拌条件下进行反应,反应后的沉淀物经过洗涤、干燥得到所述的CoO/NiOOH复合材料。与现有技术相比,本发明具有环境友好、制备方法简单、便于大规模生产等优点。

    NF@氧化钼@镍钴-LDH复合材料及其制备方法和应用

    公开(公告)号:CN113130214A

    公开(公告)日:2021-07-16

    申请号:CN202110287526.2

    申请日:2021-03-17

    Abstract: 本发明涉及一种NF@MoO3@NiCo‑LDH复合材料及其制备方法和应用,包括:制备钼酸铵溶液;以钼酸铵溶液作为电沉积液,以泡沫镍作为载体,采用一步电沉积法制得NF@MoO3前驱体,之后将NF@MoO3前驱体在空气氛围中进行退火工艺,得到NF@MoO3;将Ni(NO3)2·6H2O、Co(NO3)3·6H2O、NH4F、尿素加入水中,充分搅拌分散均匀,将溶液转入高压釜中,浸入NF@MoO3,水热反应,冷却,洗涤,干燥,得到NF@MoO3@NiCo‑LDH材料。与现有技术相比,本发明制备的材料具有独特的分层核壳结构,可以提供有效的活性位点,不仅具有MoO3促进电解质的扩散和电子的转移的优点同时具有NiCo‑LDH高比电容的优点,电化学性能良好;制备方法环境友好、制备方法简单易操作,便于大规模工业生产。

    一种高阻燃性复合高分子材料及其制备方法

    公开(公告)号:CN112646259A

    公开(公告)日:2021-04-13

    申请号:CN202011431360.9

    申请日:2020-12-10

    Abstract: 本发明涉及一种高阻燃性复合高分子材料,包括以下重量份组分的原料:乙烯‑乙酸乙烯共聚物50‑150份,低密度聚乙烯20‑70份,改性剂1‑10份,阻燃剂30‑100份。改性剂为硬脂酸,阻燃剂纳米级氢氧化镁和纳米级氢氧化铝,乙烯‑醋酸乙烯共聚物是一种很好的极性基团它具有很多优良的特性,比如具有耐应力开裂性。而且具有良好的韧性以及耐冲击性等特性。正是因为它的一系列优良的特性,使得在实验中可以有利于LDPE和一些无机化合物更好的界面结合,通过这种结合可以有效的改善阻燃材料的力学性能,使得LDPE这种非极性材料的利用率大大提升。

    一种Zn-Cu-Se复合材料及其制备方法与应用

    公开(公告)号:CN111326347A

    公开(公告)日:2020-06-23

    申请号:CN202010127638.7

    申请日:2020-02-28

    Abstract: 本发明涉及一种Zn-Cu-Se复合材料及其制备方法与应用,其制备方法包括以下步骤:(1)将可溶性锌盐、可溶性铜盐、尿素和氟化铵溶于水中,搅拌均匀后进行一次水热反应,再经离心、洗涤、干燥,得到Zn-Cu前体;(2)将所制得的Zn-Cu前体与亚硒酸钠溶于水中搅拌分散,加入氨水,形成均匀的悬浮液,再进行第二次水热反应,再经离心、洗涤、干燥,即得到Zn-Cu-Se复合材料。与现有技术相比,本发明通过两步水热合成了Zn-Cu-Se复合材料,该复合材料具有良好的电化学性能,且复合材料制备方法简单,环境友好,大大缩短了合成时间。

    一种Ce-Co-S复合材料及其制备方法和应用

    公开(公告)号:CN111276340A

    公开(公告)日:2020-06-12

    申请号:CN202010076672.6

    申请日:2020-01-23

    Abstract: 本发明涉及一种Ce-Co-S复合材料及其制备方法与应用,该复合材料的制备方法为:将可溶性钴盐,可溶性铈盐,尿素,氟化铵溶于水中,之后加入硫代乙酰胺进行水热反应;热反应结束后经冷却、离心、洗涤、干燥,即得到Ce-Co-S复合材料;将复合材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明通过一步水热合成了Ce-Co-S复合材料,制备方法环境友好、简单方便,便于大规模生产,且Ce-Co-S复合材料具有高比表面积、很高的比电容、良好的循环性能和高能量密度,电化学性能优异等优点。

    一种Cu-Co-P复合材料及其制备方法和应用

    公开(公告)号:CN111192762A

    公开(公告)日:2020-05-22

    申请号:CN202010076646.3

    申请日:2020-01-23

    Abstract: 本发明涉及一种Cu-Co-P复合材料的制备方法,包括以下步骤:将可溶性铜盐和可溶性钴盐溶于水中,进行水热反应,反应结束后经离心、洗涤、干燥,得到Cu-Co前体;将上述的Cu-Co前体与次亚磷酸钠混合后在保护气氛下煅烧,得到Cu-Co-P复合材料;将复合材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明通过水热合成了Cu-Co-P复合材料,该复合材料含有丰富的中孔和微孔,以达到良好的电化学性能,且复合材料具有制备方法简单,环境友好,大大缩短了合成时间,便于大规模生产高纯度的Cu-Co-P复合材料的优点。

    二维碳化物晶体基Zif-67衍生氧化钴材料的制备方法及应用

    公开(公告)号:CN111082047A

    公开(公告)日:2020-04-28

    申请号:CN201911364070.4

    申请日:2019-12-26

    Abstract: 本发明涉及二维碳化物晶体基Zif-67衍生氧化钴材料的制备方法,包括以下步骤:分别制备硝酸钴甲醇溶液和2-甲基咪唑甲醇溶液;将2-甲基咪唑甲醇溶液加入硝酸钴甲醇溶液中,搅拌均匀后将混合溶液装入容器中,容器密封后混合溶液进行陈化处理;将陈化处理后的混合溶液固液分离得到沉淀,将沉淀用甲醇洗涤后经过干燥、氮气氛围煅烧、空气氛围煅烧得到Co3O4;将得到的Co3O4加入到含有二维碳化物晶体的溶液中,超声分散均匀,冻干后得到所述二维碳化物晶体基Zif-67衍生氧化钴材料。与现有技术相比,本发明具有工艺简单,条件温和,成本低廉等优点,可作为锂离子电池负极材料,具有优异的电化学性能。

Patent Agency Ranking